Encoding Hybrid Logic into Higher-Order Logic

Chad E. Brown
cebrown@ags.uni-sb.de

Universität des Saarlandes, Saarbrücken, Germany
Simple Types

Simple Types \mathcal{T}:

- o (truth values)
- ι (individuals)
- $(\alpha \beta)$ (functions from β to α)
Simple Types

Simple Types \mathcal{T}:

- o (truth values)
- i (individuals)
- $(\alpha \beta)$ (functions from β to α)

$(\alpha \beta \gamma)$ abbreviates $((\alpha \beta) \gamma)$
Simple Types

Simple Types \(\mathcal{T} \):

\[o \] (truth values)

\[\iota \] (individuals)

\((\alpha \beta) \) (functions from \(\beta \) to \(\alpha \))

\(o\iota \) “sets of individuals” (characteristic functions of sets)

\(o(o\iota) \) “sets of sets”
Simply Typed \(\lambda \)-Terms

Terms:

\[x_\alpha \] Variables \((\mathcal{V})\)

\[A_\alpha \] Parameters \((\mathcal{P})\)

\[c_\alpha \] Logical Constants \((\mathcal{S})\)

\[(F_{\alpha\beta} B_\beta)_\alpha \] Application

\[(\lambda y_\beta A_\alpha)_{\alpha\beta} \] \(\lambda\)-abstraction
Simply Typed λ-Terms

Terms:

- x_α: Variables (\mathcal{V})
- A_α: Parameters (\mathcal{P})
- c_α: Logical Constants (\mathcal{S})
- $(F_\alpha B_\beta)_\alpha$: Application
- $(\lambda y_\beta A_\alpha)_{\alpha \beta}$: λ-abstraction

Equality of terms: $\alpha \beta \eta$
Simply Typed λ-Terms

Terms:

- x_α Variables (V)
- A_α Parameters (P)
- c_α Logical Constants (S)
- $(F_{\alpha\beta} B_\beta)_\alpha$ Application
- $(\lambda y_\beta A_\alpha)_{\alpha\beta}$ λ-abstraction

Equality of terms: $\alpha\beta\eta$

- α-conversion Changing Bound Variables
- β-reduction $((\lambda y_\beta A_\alpha) B) \xrightarrow{\beta} [B/y]A$
- η-reduction $(\lambda y_\beta (F_{\alpha\beta} y)) \xrightarrow{\eta} F$ ($y_\beta \notin \text{Free}(F)$)
Simply Typed λ-Terms

Terms:

- x_α Variables (\mathcal{V})
- A_α Parameters (\mathcal{P})
- c_α Logical Constants (\mathcal{S})
- $(F_{\alpha\beta} B_\beta)_\alpha$ Application
- $(\lambda y_\beta A_\alpha)_{\alpha\beta}$ λ-abstraction

Equality of terms: $\alpha\beta\eta$

Every term has a unique $\beta\eta$-normal form, up to α-conversion.
Logical Constants

\(\neg_{oo}\) – negation

\(\lor_{ooo}\) – disjunction

\(\Pi_{o(o\alpha)}^{\alpha}\) – universal quantification over type \(\alpha\)

\(=^{\alpha}_{o\alpha\alpha}\) – equality
(A_o \lor B_o) \text{ means } (\lor_{ooo} A_o B_o)

(A_o \supset B_o) \text{ means } (\neg A_o \lor B_o)

(\forall x_\alpha A_o) \text{ means } (\Pi_{o(o\alpha)}^\alpha \lambda x_\alpha A_o).

(\exists x_\alpha A_o) \text{ means } (\neg \forall x_\alpha \neg A_o).
Church’s Type Theory:

Simply typed λ-calculus with the signature

$$\{\neg, \vee\} \cup \{\Pi^\alpha \mid \alpha \in T\}$$

(and perhaps a description or choice operator).
Church’s Type Theory:

- Simply typed λ-calculus with the signature

\[\{\neg, \lor\} \cup \{\Pi^\alpha \mid \alpha \in \mathcal{T}\} \]

(and perhaps a description or choice operator).

- Axioms of Extensionality
Church’s Type Theory:

- Simply typed λ-calculus with the signature
 \[\{\neg, \vee\} \cup \{\Pi^\alpha \mid \alpha \in T\} \]
 (and perhaps a description or choice operator).
- Axioms of Extensionality
- Axiom of Description or Choice
Church’s Type Theory:

- Simply typed λ-calculus with the signature

 \[
 \{\neg, \lor\} \cup \{\Pi^\alpha \mid \alpha \in \mathcal{T}\}
 \]

 (and perhaps a description or choice operator).

- Axioms of Extensionality

- Axiom of Description or Choice

- Axiom of Infinity
Church’s Type Theory

Church’s Type Theory:

- Simply typed λ-calculus with the signature

$$\{\neg, \vee\} \cup \{\Pi^\alpha \mid \alpha \in T\}$$

(and perhaps a description or choice operator).

- Axioms of Extensionality
- Axiom of Description or Choice
- Axiom of Infinity

Elementary Type Theory (\mathcal{T}_{PS} – for automated theorem proving)
Church’s Type Theory:

- Simply typed λ-calculus with the signature

\[\{\neg, \lor\} \cup \{\Pi^\alpha \mid \alpha \in T\}\]

(and perhaps a description or choice operator).

- Axioms of Extensionality

- Axiom of Description or Choice

- Axiom of Infinity

Extensional Type Theory (TPS and LEO – automated theorem proving)
Multi-Modal Logic

“Propositional” Symbols:

\[PROP = \{ P, Q, \ldots \} \]
“Propositional” Symbols:

\[PROP = \{P, Q, \ldots\}\]

“Modalities”:

\[MOD = \{R, S, \ldots\}\]
Multi-Modal Logic

“Propositional” Symbols:

\[PROP = \{ P, Q, \ldots \} \]

“Modalities”:

\[MOD = \{ R, S, \ldots \} \]

Multi-Modal WFF’s (\(\varphi, \psi, \ldots \)):

\[P \neg \varphi \lor \psi \langle R \rangle \varphi \langle [R] \varphi \]
Multi-Modal Logic

Standard Translation to First-Order (relative to x):

- Associate each P with some predicate P.
- Associate each R with some relation R.
- $ST_x(P(x)) = P(x)$.
- $ST_x(R(x; y)) = R(x; y)$.
- $ST_x(hRi) = \exists y (R(x; y))$.
Multi-Modal Logic

Standard Translation to First-Order (relative to x):

- Associate each $P \in PROP$ with some predicate \overline{P}.

Note: ST translates to a predicate on x.
Multi-Modal Logic

Standard Translation to First-Order (relative to x):

- Associate each $P \in PROP$ with some predicate \overline{P}.
- Associate each $R \in MOD$ with some relation \overline{R}.
Multi-Modal Logic

Standard Translation to First-Order (relative to x):

- Associate each $P \in PROP$ with some predicate \overline{P}.
- Associate each $R \in MOD$ with some relation \overline{R}.
- $ST_x(P) = \overline{P}(x)$
Multi-Modal Logic

Standard Translation to First-Order (relative to x):

- Associate each $P \in PROP$ with some predicate \overline{P}.
- Associate each $R \in MOD$ with some relation \overline{R}.
- $ST_x(P) = \overline{P}(x)$
- $ST_x(\neg \varphi) = \neg ST_x(\varphi)$
Multi-Modal Logic

Standard Translation to First-Order (relative to x):

- Associate each $P \in \text{PROP}$ with some predicate \overline{P}.
- Associate each $R \in \text{MOD}$ with some relation \overline{R}.
- $ST_x(P) = \overline{P}(x)$
- $ST_x(\neg \varphi) = \neg ST_x(\varphi)$
- $ST_x(\varphi \lor \psi) = ST_x(\varphi) \lor ST_x(\psi)$
Multi-Modal Logic

Standard Translation to First-Order (relative to x):

- Associate each $P \in PROP$ with some predicate \overline{P}.
- Associate each $R \in MOD$ with some relation \overline{R}.
- $ST_x(P) = \overline{P}(x)$
- $ST_x(\neg \varphi) = \neg ST_x(\varphi)$
- $ST_x(\varphi \lor \psi) = ST_x(\varphi) \lor ST_x(\psi)$
- $ST_x(\langle R \rangle \varphi) = \exists y(\overline{R}(x, y) \land ST_y(\varphi))$
Multi-Modal Logic

Standard Translation to First-Order (relative to x):

- Associate each $P \in PROP$ with some predicate \overline{P}.
- Associate each $R \in MOD$ with some relation \overline{R}.

$ST_x(P) = \overline{P}(x)$

$ST_x(\neg \varphi) = \neg ST_x(\varphi)$

$ST_x(\varphi \lor \psi) = ST_x(\varphi) \lor ST_x(\psi)$

$ST_x(\langle R \rangle \varphi) = \exists y(\overline{R}(x, y) \land ST_y(\varphi))$

$ST_x([R] \varphi) = \forall y(\overline{R}(x, y) \supset ST_y(\varphi))$
Multi-Modal Logic

Standard Translation to First-Order (relative to x):

- Associate each $P \in PROP$ with some predicate \overline{P}.
- Associate each $R \in MOD$ with some relation \overline{R}.
- $ST_x(P) = \overline{P}(x)$
- $ST_x(\neg \varphi) = \neg ST_x(\varphi)$
- $ST_x(\varphi \lor \psi) = ST_x(\varphi) \lor ST_x(\psi)$
- $ST_x(\langle R \rangle \varphi) = \exists y(\overline{R}(x, y) \land ST_y(\varphi))$
- $ST_x([R] \varphi) = \forall y(\overline{R}(x, y) \supset ST_y(\varphi))$

Note: ST translates to a predicate on x.
Multi-Modal Logic

Translation to Higher-Order (map to type o_ℓ):
Multi-Modal Logic

Translation to Higher-Order (map to type o_{ℓ}):

- Associate each $P \in PROP$ with some predicate $\overline{P}_{o_{\ell}}$.
Multi-Modal Logic

Translation to Higher-Order (map to type o_l):

- Associate each $P \in PROP$ with some predicate \overline{P}_{ol}.
- Associate each $R \in MOD$ with some relation \overline{R}_{oll}.
Multi-Modal Logic

Translation to Higher-Order (map to type o_ℓ):

- Associate each $P \in PROP$ with some predicate \overline{P}_{o_ℓ}.
- Associate each $R \in MOD$ with some relation \overline{R}_{o_ℓ}.
- $HST(P) = \overline{P}$
Multi-Modal Logic

Translation to Higher-Order (map to type o_{ℓ}):

- Associate each $P \in PROP$ with some predicate $P_{o_{\ell}}$.
- Associate each $R \in MOD$ with some relation $R_{o_{\ell}}$.
- $HST(P) = P$
- $HST(\neg \varphi) = (\lambda x_{\ell} \neg (HST(\varphi)x))$
Multi-Modal Logic

Translation to Higher-Order (map to type $o\ell$):

- Associate each $P \in PROP$ with some predicate $\overline{P}_{o\ell}$.
- Associate each $R \in MOD$ with some relation $\overline{R}_{o\ell}$.
- $HST(P) = \overline{P}$
- $HST(\neg \varphi) = (\lambda x_l \neg (HST(\varphi)x))$
- $HST(\varphi \lor \psi) = (\lambda x_l ((HST(\varphi)x) \lor (HST(\psi)x)))$
Multi-Modal Logic

Translation to Higher-Order (map to type o_ℓ):

- Associate each $P \in PROP$ with some predicate P_{o_ℓ}.
- Associate each $R \in MOD$ with some relation R_{o_ℓ}.

- $HST(P) = \overline{P}$
- $HST(\neg \varphi) = (\lambda x_i \neg (HST(\varphi)x))$
- $HST(\varphi \lor \psi) = (\lambda x_i ((HST(\varphi)x) \lor (HST(\psi)x)))$
- $HST(\langle R \rangle \varphi) = \lambda x_i \exists y_i ((\overline{R}xy) \land (HST(\varphi)y))$
Multi-Modal Logic

Translation to Higher-Order (map to type o_ℓ):

- Associate each $P \in PROP$ with some predicate \overline{P}_{o_ℓ}.
- Associate each $R \in MOD$ with some relation \overline{R}_{o_ℓ}.

$$HST(P) = \overline{P}$$

$$HST(\neg \varphi) = (\lambda x_{\ell} \neg (HST(\varphi)x))$$

$$HST(\varphi \lor \psi) = (\lambda x_{\ell} ((HST(\varphi)x) \lor (HST(\psi)x)))$$

$$HST(\langle R \rangle \varphi) = \lambda x_{\ell} \exists y_{\ell}((\overline{R}xy) \land (HST(\varphi)y))$$

$$HST([R]\varphi) = \lambda x_{\ell} \forall y_{\ell}((\overline{R}xy) \supset (HST(\varphi)y))$$
Multi-Modal Logic

Translation to Higher-Order (map to type o_l):

- Associate each $P \in PROP$ with some predicate P_{o_l}.
- Associate each $R \in MOD$ with some relation R_{o_l}.
- $HST(P) = \overline{P}$
- $HST(\neg \varphi) = (\lambda x_i \neg (HST(\varphi)x))$
- $HST(\varphi \lor \psi) = (\lambda x_i ((HST(\varphi)x) \lor (HST(\psi)x)))$
- $HST(\langle R \rangle \varphi) = \lambda x_i \exists y_i ((\overline{R}x y) \land (HST(\varphi)y))$
- $HST(\lbrack R \rbrack \varphi) = \lambda x_i \forall y_i ((\overline{R}x y) \supset (HST(\varphi)y))$
Encoding Multi-Modal Logic

- Associate each $P \in PROP$ with some predicate \overline{P}_{oL}.
- Associate each $R \in MOD$ with some relation \overline{R}_{oL}.
- $HST(P) = \overline{P}$
- $HST(\neg \varphi) = (\lambda x_i (\neg (HST(\varphi)x)))$
- $HST(\varphi \lor \psi) = (\lambda x_i ((HST(\varphi)x) \lor (HST(\psi)x)))$
- $HST([R] \varphi) = \lambda x_i \forall y_i ((\overline{R} x y) \supset (HST(\varphi)y))$
- $HST(\langle R \rangle \varphi) = \lambda x_i \exists y_i ((\overline{R} x y) \land (HST(\varphi)y))$
Encoding Multi-Modal Logic

- Associate each $P \in PROP$ with some predicate \overline{P}_{ov}.
- Associate each $R \in MOD$ with some relation \overline{R}_{ov}.
- $HST(P) = \overline{P}$
- $HST(\neg \varphi) = (\lambda x_i \neg (HST(\varphi) x))$
- $HST(\varphi \lor \psi) = (\lambda x_i ((HST(\varphi) x) \lor (HST(\psi) x)))$
- $HST(\langle R \rangle \varphi) = \lambda x_i \exists y_i ((\overline{R} x y) \land (HST(\varphi) y))$
- $HST(\lbrack R \rbrack \varphi) = \lambda x_i \forall y_i ((\overline{R} x y) \supset (HST(\varphi) y))$
Encoding Multi-Modal Logic

- Associate each $P \in PROP$ with some predicate \overline{P}_{ol}.
- Associate each $R \in MOD$ with some relation \overline{R}_{ol}.

\[
HST(P) = \overline{P}
\]

\[
HST(\neg \varphi) = (\neg HST(\varphi))
\]

\[
HST(\varphi \lor \psi) = (\lambda x_i ((HST(\varphi)x) \lor (HST(\psi)x)))
\]

\[
HST([R]\varphi) = \lambda x_i \exists y_i ((\overline{R}x y) \land (HST(\varphi)y))
\]

\[
HST(\langle R \rangle \varphi) = \lambda x_i \forall y_i ((\overline{R}x y) \supset (HST(\varphi)y))
\]

$\neg_{ol(ol)}$ is $(\lambda U_{ol} \lambda x_i \neg(Ux))$ (Complement)
Encoding Multi-Modal Logic

- Associate each $P \in PROP$ with some predicate \overline{P}_o.
- Associate each $R \in MOD$ with some relation \overline{R}_o.
- $\text{HST}(P) = \overline{P}$
- $\text{HST}(\neg \varphi) = (\neg \text{HST}(\varphi))$
- $\text{HST}(\varphi \lor \psi) = (\lambda x_i ((\text{HST}(\varphi) x) \lor (\text{HST}(\psi) x)))$
- $\text{HST}([R]\varphi) = \lambda x_i \exists y_i ((\overline{R} x y) \land (\text{HST}(\varphi) y))$
- $\text{HST}([R]\varphi) = \lambda x_i \forall y_i ((\overline{R} x y) \supset (\text{HST}(\varphi) y))$
Encoding Multi-Modal Logic

- Associate each $P \in PROP$ with some predicate \overline{P}_{ol}.
- Associate each $R \in MOD$ with some relation \overline{R}_{ol}.
- $HST(P) = \overline{P}$
- $HST(\neg \varphi) = (\neg HST(\varphi))$
- $HST(\varphi \lor \psi) = (HST(\varphi) \lor HST(\psi))$
- $HST([R] \varphi) = \lambda x_1 \exists y_1((\overline{R} x y) \land (HST(\varphi) y))$
- $HST(\langle R \rangle \varphi) = \lambda x_1 \forall y_1((\overline{R} x y) \supset (HST(\varphi) y))$

$\lor_{ol(ol)} \text{ is } (\lambda U_{ol} \lambda V_{ol} \lambda x_1 . (U x) \lor (V x)) \text{ (Union)}$
Encoding Multi-Modal Logic

- Associate each $P \in PROP$ with some predicate \overline{P}_{ov}.
- Associate each $R \in MOD$ with some relation \overline{R}_{ov}.

- $HST(P) = \overline{P}$
- $HST(\neg \varphi) = (\neg HST(\varphi))$
- $HST(\varphi \lor \psi) = (HST(\varphi) \lor HST(\psi))$
- $HST(\langle R \rangle \varphi) = \lambda x_i \exists y_i ((\overline{R} x y) \land (HST(\varphi) y))$
- $HST([R] \varphi) = \lambda x_i \forall y_i ((\overline{R} x y) \supset (HST(\varphi) y))$
Encoding Multi-Modal Logic

- Associate each \(P \in PROP \) with some predicate \(\overline{P}_{o_1} \).
- Associate each \(R \in MOD \) with some relation \(\overline{R}_{o_2} \).

\[
HST(P) = \overline{P}
\]

\[
HST(\neg \varphi) = (\neg HST(\varphi))
\]

\[
HST(\varphi \lor \psi) = (HST(\varphi) \lor HST(\psi))
\]

\[
HST(\langle R \rangle \varphi) = (\Diamond \overline{R} \ HST(\varphi))
\]

\[
HST([R] \varphi) = \lambda x_i \forall y_i ((\overline{R} x y) \supset (HST(\varphi) y))
\]

\[
\Diamond_{o_1(o_1)} \ \text{is} \ (\lambda R_{o_2} \lambda U_{o_1} \lambda x_i \exists y_i . R x y \land U y)
\]
Encoding Multi-Modal Logic

- Associate each $P \in PROP$ with some predicate \overline{P}_o.
- Associate each $R \in MOD$ with some relation \overline{R}_o.
- $HST(P) = \overline{P}$
- $HST(\neg \phi) = (\neg HST(\phi))$
- $HST(\phi \lor \psi) = (HST(\phi) \lor HST(\psi))$
- $HST(\langle R \rangle \phi) = (\Diamond \overline{R} \ HST(\phi))$
- $HST([R] \phi) = \lambda x_1 \forall y_1 ((\overline{R} x y) \supset (HST(\phi) y))$
Associate each $P \in PROP$ with some predicate $\overline{P}_{o\ell}$.

Associate each $R \in MOD$ with some relation $\overline{R}_{o\ell}$.

$HST(P) = \overline{P}$

$HST(\neg \varphi) = (\neg HST(\varphi))$

$HST(\varphi \vee \psi) = (HST(\varphi) \vee HST(\psi))$

$HST(\langle R \rangle \varphi) = (\diamond \overline{R} \ HST(\varphi))$

$HST([R] \varphi) = (\Box \overline{R} \ HST(\varphi))$

$\Box_{o\ell(o\ell)(o\ell)} \text{ is } (\lambda R_{o\ell} \lambda U_{o\ell} \lambda x \lambda y . R x y \supset U y)$
Associate each $P \in PROP$ with some predicate \overline{P}_o.

Associate each $R \in MOD$ with some relation \overline{R}_o.

$HST(P) = \overline{P}$

$HST(\neg \varphi) = (\neg HST(\varphi))$

$HST(\varphi \lor \psi) = (HST(\varphi) \lor HST(\psi))$

$HST(\langle R \rangle \varphi) = (\Diamond \overline{R} HST(\varphi))$

$HST([R] \varphi) = (\Box \overline{R} HST(\varphi))$

Using these definitions, the translation is trivial.
Multi-Modal Fragment of Higher-Order

\[PROP = \{ P, Q, \ldots \} \subseteq V_{ol} \cup P_{ol} \]
Multi-Modal Fragment of Higher-Order

\[PROP = \{P, Q, \ldots\} \subseteq \mathcal{V}_{ol} \cup \mathcal{P}_{ol} \]

\[MOD = \{R, S, \ldots\} \subseteq \mathcal{V}_{ol} \cup \mathcal{P}_{ol} \]
Multi-Modal Fragment of Higher-Order

\[PROP = \{ P, Q, \ldots \} \subseteq V_{ol} \cup P_{ol} \]

\[MOD = \{ R, S, \ldots \} \subseteq V_{ol} \cup P_{ol} \]

Multi-Modal Formulas are certain terms \((\varphi, \psi, \ldots)\) of type \(ol\):

\[P | \neg \varphi | (\varphi \lor \psi) | (\Diamond R \varphi) | (\Box R \varphi) \]
Multi-Modal Fragment of Higher-Order

\[\text{PROP} = \{P, Q, \ldots\} \subseteq V_{ol} \cup P_{ol} \]

\[\text{MOD} = \{R, S, \ldots\} \subseteq V_{ol} \cup P_{ol} \]

Multi-Modal Formulas are certain terms \((\varphi, \psi, \ldots)\) of type \(oI\):

\[P|\neg\varphi|(\varphi \lor \psi)|(\Diamond R \varphi)|(\Box R \varphi) \]

No inductive translation is required.
Two directions:

1. Generalize the types.
2. Extend to Hybrid Logic.
Generalizing the Types

(Properties on type α)

$$PROP^\alpha = \{P_{o\alpha}, Q_{o\alpha}, \ldots \} \subseteq \mathcal{V}_{o\alpha} \cup \mathcal{P}_{o\alpha}$$
Generalizing the Types

(Properties on type α)

$$PROP^\alpha = \{P_{o\alpha}, Q_{o\alpha}, \ldots\} \subseteq \mathcal{V}_{o\alpha} \cup \mathcal{P}_{o\alpha}$$

(Relations between α and β)

$$MOD^{\alpha,\beta} = \{R_{o\beta\alpha}, S_{o\beta\alpha}, \ldots\} \subseteq \mathcal{V}_{o\beta\alpha} \cup \mathcal{P}_{o\beta\alpha}$$
Generalizing the Types

(Properties on type α)

$$PROP^\alpha = \{P_{o\alpha}, Q_{o\alpha}, \ldots\} \subseteq \mathcal{V}_{o\alpha} \cup \mathcal{P}_{o\alpha}$$

(Relations between α and β)

$$MOD^{\alpha,\beta} = \{R_{o\beta\alpha}, S_{o\beta\alpha}, \ldots\} \subseteq \mathcal{V}_{o\beta\alpha} \cup \mathcal{P}_{o\beta\alpha}$$

α-Multi-Modal Formulas MMF^α (terms of type $o\alpha$):

$$P_{o\alpha} \vdash \lnot^\alpha \varphi \vdash (\varphi \lor \psi) \vdash (\diamond^{\alpha,\beta} R_{o\beta\alpha} \varphi_{o\beta}) \vdash (\square^{\alpha,\beta} R_{o\beta\alpha} \varphi_{o\beta})$$
Generalizing the Types

(Properties on type α)

$$PROP^\alpha = \{P_{o\alpha}, Q_{o\alpha}, \ldots\} \subseteq \mathcal{V}_{o\alpha} \cup \mathcal{P}_{o\alpha}$$

(Relations between α and β)

$$MOD^{\alpha,\beta} = \{R_{o\beta\alpha}, S_{o\beta\alpha}, \ldots\} \subseteq \mathcal{V}_{o\beta\alpha} \cup \mathcal{P}_{o\beta\alpha}$$

α-Multi-Modal Formulas MMF^α (terms of type $o\alpha$):

$$P_{o\alpha} \vdash^{\alpha} \neg \varphi | (\varphi \lor^{\alpha} \psi) | (\Diamond^{\alpha,\beta} R_{o\beta\alpha} \varphi_{o\beta}) | (\Box^{\alpha,\beta} R_{o\beta\alpha} \varphi_{o\beta})$$

$\neg^{\alpha} is$ $\lambda U_{o\alpha} \lambda x_{\alpha} \neg (U x)$
Generalizing the Types

(Properties on type α)

$$PROP^\alpha = \{P_{o\alpha}, Q_{o\alpha}, \ldots\} \subseteq \mathcal{V}_{o\alpha} \cup \mathcal{P}_{o\alpha}$$

(Relations between α and β)

$$MOD^{\alpha,\beta} = \{R_{o\beta\alpha}, S_{o\beta\alpha}, \ldots\} \subseteq \mathcal{V}_{o\beta\alpha} \cup \mathcal{P}_{o\beta\alpha}$$

α-Multi-Modal Formulas MMF^α (terms of type $o\alpha$):

$$P_{o\alpha} \vdash \lnot^\alpha \varphi | (\varphi \lor^\alpha \psi) | (\Diamond^{\alpha,\beta} R_{o\beta\alpha} \varphi_{o\beta}) | (\Box^{\alpha,\beta} R_{o\beta\alpha} \varphi_{o\beta})$$

\lor^α is $$(\lambda U_{o\alpha} \lambda V_{o\alpha} \lambda x. (U x) \lor (V x))$$
Generalizing the Types

(Properties on type α)

$$PROP^\alpha = \{P_{o\alpha}, Q_{o\alpha}, \ldots\} \subseteq V_{o\alpha} \cup P_{o\alpha}$$

(Relations between α and β)

$$MOD^{\alpha,\beta} = \{R_{o\beta\alpha}, S_{o\beta\alpha}, \ldots\} \subseteq V_{o\beta\alpha} \cup P_{o\beta\alpha}$$

α-Multi-Modal Formulas MMF^α (terms of type $o\alpha$):

$$P_{o\alpha} \models \neg^\alpha \varphi \models (\varphi \lor^\alpha \psi) \models (\diamond^{\alpha,\beta} R_{o\beta\alpha} \varphi_{o\beta}) \models (\Box^{\alpha,\beta} R_{o\beta\alpha} \varphi_{o\beta})$$

$\diamond^{\alpha,\beta}$ is $(\lambda R_{o\beta\alpha} \lambda U_{o\beta} \lambda x_\alpha \exists y_\beta . R x y \land U y)$
Generalizing the Types

(Properties on type α)

\[\text{PROP}^\alpha = \{ P_{o\alpha}, Q_{o\alpha}, \ldots \} \subseteq \mathcal{V}_{o\alpha} \cup \mathcal{P}_{o\alpha} \]

(Relations between α and β)

\[\text{MOD}^{\alpha,\beta} = \{ R_{o\beta\alpha}, S_{o\beta\alpha}, \ldots \} \subseteq \mathcal{V}_{o\beta\alpha} \cup \mathcal{P}_{o\beta\alpha} \]

α-Multi-Modal Formulas MMF^α (terms of type $o\alpha$):

\[P_{o\alpha} \vdash^{\alpha} \varphi \vdash (\varphi \lor^{\alpha} \psi) \vdash (\diamond^{\alpha,\beta} R_{o\beta\alpha} \varphi) \vdash (\square^{\alpha,\beta} R_{o\beta\alpha} \varphi) \]

$\square^{\alpha,\beta}$ is $\lambda R_{o\beta\alpha} \lambda U_{o\beta} \lambda x_{\alpha} \forall y_{\beta}. R x y \supset U y$
Examples

Let $\in_{\omega(\omega)}$ stand for $[\lambda U_{\omega} \lambda x_\alpha. U x]$.
Examples

Let \(\bar{\in}^{o\alpha}_{o\alpha} \) stand for \([\lambda U_{o\alpha} \lambda x_{\alpha}. U x]\).

Intuitively, \((\bar{\in} U x)\) means \(x \in U\).
Examples

Let \(\epsilon_{o\alpha(o\alpha)} \) stand for \(\lambda U_{o\alpha} \lambda x_{\alpha}.Ux \).
Intuitively, \((\epsilon \; U \; x) \) means \(x \in U \).
Let \(P_{o\alpha} \in PROP^{\alpha} \).
Examples

Let $\bar{\in}_{o\alpha(o\alpha)}$ stand for $[\lambda U_{o\alpha} \lambda x_{\alpha}. U x]$.
Intuitively, $(\bar{\in} U x)$ means $x \in U$.
Let $P_{o\alpha} \in PROP^{o\alpha}$.

$[\bar{\in}] P$ is in $MMF^{o\alpha}$
Examples

Let $\overline{\in}_{o\alpha(o\alpha)}$ stand for $[\lambda U_{o\alpha}\lambda x_{\alpha}.U x]$. Intuitively, $(\overline{\in} U x)$ means $x \in U$.

Let $P_{o\alpha} \in PROP^\alpha$.

- $[\overline{\in}]P$ is in $MMF^{o\alpha}$

 This is true at $Q_{o\alpha}$ iff Q is a subset of P. TPS can prove equivalence automatically (expanding definitions and working in higher-order logic).
Examples

Let $\bar{\in}_{\circ\alpha (o\alpha)}$ stand for $[\lambda U_{o\alpha} \lambda x_{\alpha}. Ux]$. Intuitively, $(\bar{\in} U x)$ means $x \in U$. Let $P_{o\alpha} \in PROP_{\alpha}$.

- $[\bar{\in}] P$ is in $MMF^{o\alpha}$
- $[\bar{\in}](P \land \neg P)$
Examples

Let $\bar{e}_{o\alpha(o\alpha)}$ stand for $[\lambda U_{o\alpha} \lambda x_{\alpha}. U x]$.

Intuitively, $(\bar{e} U x)$ means $x \in U$.

Let $P_{o\alpha} \in PROP^{\alpha}$.

- $[\bar{e}] P$ is in $MMF^{o\alpha}$
- $[\bar{e}] (P \land \neg P)$

This is true at $Q_{o\alpha}$ iff Q is empty. Automatic Proof by TPS
Examples

Let \(\varepsilon_{o\alpha(o\alpha)} \) stand for \([\lambda x_{\alpha}\lambda U_{o\alpha}.Ux] \).
Examples

Let $\in_{o\alpha(\alpha)}$ stand for $[\lambda x_\alpha \lambda U_{o\alpha}. U x]$. Intuitively, $(\in x U)$ means $x \in U$.
Examples

Let $\in_{o\alpha(o\alpha)}$ stand for $[\lambda x_\alpha \lambda U_{o\alpha}. Ux]$.
Let $OPEN_{o(o\alpha)} \in PROP^{o\alpha}$.
Examples

Let $\varepsilon_{o\alpha(o\alpha)}$ stand for $[\lambda x_{\alpha} \lambda U_{o\alpha}. U x]$.
Let $OPEN_{o(o\alpha)} \in PROP^{o\alpha}$.

\[\langle \varepsilon \rangle OPEN \text{ is in } MMF^{\alpha}\]
Examples

Let $\in_{o\alpha(o\alpha)}$ stand for $[\lambda x_\alpha \lambda U_{o\alpha}. Ux]$.
Let $OPEN_{o(o\alpha)} \in PROP^{o\alpha}$.

$\langle \in \rangle OPEN$ is in MMF^α
This is true at x_α iff x is in some P in $OPEN$.

Examples

Let \(\in_{\alpha(o\alpha)} \) stand for \([\lambda x_{\alpha} \lambda U_{o\alpha}.Ux]\).
Let \(OPEN_{o(o\alpha)} \in PROP^o\alpha \).

\[(\in)OPEN \text{ is in } MMF^\alpha \]
This is true at \(x_{\alpha} \) iff \(x \) is in some \(P \) in \(OPEN \).
Represents union of a collection
Examples

Let $\in_{\alpha}(o_{\alpha})$ stand for $[\lambda x_{\alpha} \lambda U_{\alpha}. U x]$. Let $OPEN_{o(\alpha)} \in PROP^{\alpha}$.

$\langle \in \rangle OPEN$ is in MMF^{α}
This is true at x_{α} iff x is in some P in $OPEN$. Represents union of a collection
(Automatic proof of equivalence by TPS)
Hybrid Logic

Multi-Modal Plus Nominals:

\[NOM = \{ i, j, \ldots \} \]
Hybrid Logic

Multi-Modal Plus Nominals:

\[NOM = \{ i, j, \ldots \} \]

“At” operator:

\[\@_i \varphi \]
Hybrid Logic

Multi-Modal Plus Nominals:

\[NOM = \{ i, j, \ldots \} \]

“At” operator:

\[@_i \varphi \]

Maybe downarrow binder:

\[\downarrow x. \varphi(x) \]
First-Order Translation

- Associate nominals i with variable \bar{i}.
- $ST_x(i) = (x = \bar{i})$
First-Order Translation

- Associate nominals i with variable \overline{i}.
- $ST_x(i) = (x = \overline{i})$
- $ST_x(@_i \varphi) = [\overline{i}/x] ST_x(\varphi)$
First-Order Translation

- Associate nominals i with variable \overline{i}.

- $ST_x(i) = (x = \overline{i})$

- $ST_x(@i\varphi) = [\overline{i}/x]ST_x(\varphi)$

- $ST_x(y) = (x = y)$ (y is a “nominal variable”)
First-Order Translation

- Associate nominals i with variable \bar{i}.
- $ST_x(i) = (x = \bar{i})$
- $ST_x(@i\varphi) = [\bar{i}/x]ST_x(\varphi)$
- $ST_x(y) = (x = y)$ (y is a “nominal variable”)
- $ST_x(\downarrow y.\varphi) = [x/y]ST_x(\varphi)$
Nominals at type α:

$$NOM^{\alpha} = \{i_\alpha, j_\alpha, \ldots\} \subseteq V_\alpha \cup P_\alpha$$
Encoding Hybrid Logic with General Types

Nominals at type α:

$$NOM^\alpha = \{i_\alpha, j_\alpha, \ldots\} \subseteq \mathcal{V}_\alpha \cup \mathcal{P}_\alpha$$

α-Hybrid Formula HF^α is a term of type o_α constructed as α-Multi-Modal Plus:
Nominals at type α:

$$NOM^\alpha = \{i_\alpha, j_\alpha, \ldots\} \subseteq \mathcal{V}_\alpha \cup \mathcal{P}_\alpha$$

α-Hybrid Formula HF^α is a term of type $o\alpha$ constructed as α-Multi-Modal Plus:

$$\bigcirc (U^{\alpha} i_\alpha)$$ where U^{α} is $(\lambda x_\alpha \lambda y_\alpha (x = y))$
Nominals at type α:

$$NOM^\alpha = \{i_\alpha, j_\alpha, \ldots\} \subseteq \mathcal{V}_\alpha \cup \mathcal{P}_\alpha$$

α-Hybrid Formula HF^α is a term of type o_α constructed as α-Multi-Modal Plus:

- $(U^\alpha i_\alpha)$ where U^α is $(\lambda x_\alpha \lambda y_\alpha (x = y))$

- $(@^{\alpha,\beta} j_\beta \varphi_{o_\beta})_{o_\alpha}$ where $@^{\alpha,\beta}$ is $\lambda z_\beta \lambda V_{o_\beta} \lambda x_\alpha. V z$

(Note this does not depend x.)
Encoding Hybrid Logic with General Types

Nominals at type α:

$$NOM^\alpha = \{i_\alpha, j_\alpha, \ldots\} \subseteq \mathcal{V}_\alpha \cup \mathcal{P}_\alpha$$

α-Hybrid Formula HF^α is a term of type $o\alpha$ constructed as α-Multi-Modal Plus:

- $(U^\alpha i_\alpha)$ where U^α is $(\lambda x_\alpha \lambda y_\alpha (x = y))$

- $(\@^{\alpha, \beta} j_\beta \varphi_{o\beta})_{o\alpha}$ where $\@^{\alpha, \beta}$ is $\lambda z_\beta \lambda V_{o\beta} \lambda x_\alpha. V z$

- $(\downarrow^\alpha (\lambda i_\alpha \cdot \varphi_{o\alpha}))$ (where i_α is a “nominal variable”)

where \downarrow^α is $\lambda W_{o\alpha\alpha} \cdot \lambda x_\alpha (W x x)$
Examples

\[P_{o\alpha} \in PROP^\alpha \]
Examples

\[P_{o\alpha} \in PROP^\alpha \]
\[e_{o\alpha} \in NOM^{o\alpha} \]
Examples

\[P_{o\alpha} \in PROP^{\alpha} \]
\[e_{o\alpha} \in NOM^{o\alpha} \]

\[(U^{o\alpha} e) \supset [\in](P \land \neg P) \]
Examples

\[P_{o\alpha} \in PROP^{\alpha} \]
\[e_{o\alpha} \in NOM^{o\alpha} \]

\[(U^{o\alpha}e) \supset [\exists](P \land \neg P)\]
Valid if \(e\) is empty.
Examples

\[P_{o\alpha} \in PROP^{o\alpha} \]
\[e_{o\alpha} \in NOM^{o\alpha} \]

- \((U^{o\alpha} e) \supset [\in](P \land \neg P)\)

 Valid if \(e\) is empty.

- \((U^{o\alpha} e) \equiv [\in](P \land \neg P)\)
Examples

\[P_{o\alpha} \in PROP^{\alpha} \]
\[e_{o\alpha} \in NOM^{o\alpha} \]

\[(U^{o\alpha}e) \supset [\in](P \land \neg P) \]
Valid if \(e \) is empty.

\[(U^{o\alpha}e) \equiv [\in](P \land \neg P) \]
Valid if \(e \) is the unique empty set (extensionality).
Examples

\[P_{o\alpha} \in PROP^{o\alpha} \]
\[e_{o\alpha} \in NOM^{o\alpha} \]

- \((U^{o\alpha}e) \supset [\in](P \land \neg P) \)
 Valid if \(e \) is empty.

- \((U^{o\alpha}e) \equiv [\in](P \land \neg P) \)
 Valid if \(e \) is the unique empty set (extensionality).

- \(@^{\beta,(o\alpha)} e [\in] (P \land \neg P) \)
Examples

\[P_{o\alpha} \in PROP^{o\alpha} \]
\[e_{o\alpha} \in NOM^{o\alpha} \]

\begin{itemize}
 \item \((U^{o\alpha} e) \supset [\in] (P \land \neg P)\)
 Valid if \(e\) is empty.
 \item \((U^{o\alpha} e) \equiv [\in] (P \land \neg P)\)
 Valid if \(e\) is the \textit{unique} empty set (extensionality).
 \item @\((\beta, o\alpha) e [\in] (P \land \neg P)\)
 True at \(b_\beta\) iff \(e\) is empty (does not depend on \(b\)).
\end{itemize}
Examples

\[P_{o\alpha} \in PROP^{\alpha} \]
\[e_{o\alpha} \in NOM^{o\alpha} \]

- \((U^{o\alpha} e) \supset [\in](P \land \neg P)\)
 Valid if \(e\) is empty.

- \((U^{o\alpha} e) \equiv [\in](P \land \neg P)\)
 Valid if \(e\) is the unique empty set (extensionality).

- \(\@^{\beta,(o\alpha)} e [\in] (P \land \neg P)\)
 True at \(b_{\beta}\) iff \(e\) is empty (does not depend on \(b\)).

Automatic proofs in \(TPS\)
Using λ-terms, the standard translation from Multi-Modal (and Hybrid) Logic to first-order logic becomes an easier translation into higher-order logic.
Conclusion

Using λ-terms, the standard translation from Multi-Modal (and Hybrid) Logic to first-order logic becomes an easier translation into higher-order logic.

The translation shows Hybrid Logic is a natural fragment of higher-order logic.
Conclusion

- Using λ-terms, the standard translation from Multi-Modal (and Hybrid) Logic to first-order logic becomes an easier translation into higher-order logic.

- The translation shows Hybrid Logic is a natural fragment of higher-order logic.

- By generalizing over types, we obtain a typed form of Hybrid Logic.