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Abstract

Thisis adescription of TpPs, atheorem proving system for classical type theory (Church’s typed
A-calculus). TPs has been designed to be a general research tool for manipulating wffs of first- and
higher-order logic, and searching for proofs of such wffs interactively or automatically, or in a
combination of these modes. An important feature of TPS is the ability to translate between
expansion proofs and natural deduction proofs. Examples of theorems which TPS can prove
completely automatically are given to illustrate certain aspects of TPS's behavior and problems of
theorem proving in higher-order logic.’
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1. Introduction

TPS is a theorem proving system for classical type theory® (Church’s typed A-calculus[20])
which has been under development at Carnegie Mellon University for a number of years. This paper
gives a general description of TPS, serves as a report on our implementations of ideas which were
discussed in previous papers, and illuminates what can be accomplished using these ideas. Many of
the ideas underlying TPs are summarized in [8], with which we shall assume familiarity.

We start with a brief history of the TPs project.

TPsis based on an approach to automated theorem proving called the mating method [5], which
is essentially the same as the connection method developed independently by Bibel [13]. The mating
method arose from reflections[3] on what a proof by resolution [50] reveals about the logical
structure of the theorem being proved, but a distinguishing characteristic of the mating method is that
it does not require reduction to clausal form.

Matings provide significant insight into the logical structure of theorems, but it is not always
easy for people to grasp them intuitively or to relate them to other approaches to theorem proving, so
a procedure for automatically transforming acceptable matings into proofs in natural deduction style
was developed [4]. The ideas in[5], [4], and [32] were implemented in a theorem proving system
which we now call Tpsl. This was described in[37] and[6]. It automatically proved certain
theorems of type theory (higher-order logic) as well as first-order logic, and embodied a proof
procedure which was in principle complete for first-order logic, though not for type theory.

As a start toward extending of the mating method to a complete method for proving theorems of
higher-order logic, it was shown in [6] that a sentence is a theorem of elementary type theory (the
system of [1] and [2]) if and only if it has a tautologous development, where a development is the
analogue of a Herbrand expansion of a sentence of first-order logic. Once one has found a
tautologous development for a theorem, one can construct a proof of it in natural deduction style
without further search. Thus, the problem of finding proofs for theorems of higher-order logic can be
reduced to the problem of finding tautologous developments for them, and the search can be carried
on in a context where one can hope to analyze the essential logical structure of the theorem.

Dale Miller explored this subject more deeply, proved an analogue of the metatheorem
mentioned above in which the notion of a development was replaced by that of an expansion proof,
gave the details of an explicit algorithm for converting expansion proofs into natural deduction
proofs, and proved it correct. An expansion proof is an elegant and concise representation of a
theorem of type theory, its tautologous development, and the relation between them. Matings are
naturally embedded in expansion proofs, and Miller's work [38], [39], [40] provided a firm
theoretical foundation for the extension of the matings approach to theorem proving from first-order
logic to higher-order logic.

In[45] and [46] it was shown how to translate natural deduction proofs into expansion proofs,
and an improved method of trandating expansion proofs into natural deduction proofs was given.

8Type theory was introduced by Bertrand Russell [51] [52], and was used extensively in [57]. In [20] Church introduced
an improved and simplified formulation of type theory which incorporated the notation of the A-calculus. Since then, other
type theories have been devel oped, so we refer to Church’s formulation as classical type theory.



The papers[46] and [47] also contain discussions of equality and extensionality, and methods of
generating more elegant natural deduction proofs.

About 1985 work started on the design and implementation of a completely new version of TPs
to accommodate the transition from general matings to expansion proofs, take advantage of new
versions of Lisp and new computers, and incorporate various improvements in the program. The
initial work was done in MacLisp, yielding a program caled TPs2, and this was later trandlated into
Common Lisp to create the current version of TPS, which is called TPS3. TPS3 owes a great deal to
the work Dae Miller did on TPsl in addition to his theoretical contributions. Carl Klapper also
contributed to the development of TPs3. Henceforth we refer to TPS3 simply as TPS, since the
previous versions of TPS are now obsolete.

The desirability of finding a search procedure in which expansions of the formula are motivated
by the needs of the matingsearch process has long been evident. In[33] and [34] a matingsearch
procedure is described in which quantifier replications are localized to vertical paths (thus reducing
the enormous growth in the number of paths which accompanies replications), and the replications for
each path are generated as needed to permit the construction of a mating which spans that path. The
search space grows and contracts as different vertical paths are considered. This procedure has been
implemented in TPS and has improved its speed very significantly.

TPs combines ideas from two fields which, regrettably, have not achieved much cross-
fertilization. On the one hand, there is the *‘traditional’’ work in first-order theorem proving using
such methods as resolution, model elimination, or connection graphs. On the other hand we find
“‘avant-garde’’ proof-checkers and theorem provers for type theories of a variety of flavors, mostly
centered around interactive proof construction with the aid of tactics.

In traditional theorem provers for first-order logic, relatively little attention has been paid to
issues of human-computer interaction, but much attention has been paid to finding complete strategies
which can be implemented very efficiently using, for example, advanced indexing schemes. While
the use of first-order logic produces simplicity and efficiency in basic syntax and certain processes,
many theorems of mathematics and other disciplines can be expressed very simply in type theory, but
only in arather complex way in first-order logic. This complexity can enormously enlarge the search
space one confronts when one tries to proves these theorems.

On the other hand, tactic-based theorem provers, beginning with LCF[27] and including
systems such HOL [28] [29], Nuprl [21], the Calculus of Constructions[22], Isabelle [44] and IMPS

[23], have paid considerable attention to user interaction and to the problem of formulating and
supporting expressive languages for the formalization of mathematics. Techniques developed for
first-order theorem proving, however, have been essentially ignored with the exception of unification,
which now plays an important role in a number of these systems. Another point to note is that some
of these systems chose to work in constructive logics for a variety of reasons, and that classical
theorem proving techniques do not immediately apply in these circumstances. (Only recently has this
gap between classical and constructive theorem proving techniques begun to close [56] [43].)

TpPs unifies important ideas and concepts from both of these lines of research into a single
system. It is based on classical higher-order logic, in which much of mathematics can be formalized
very directly. It provides a natural deduction interface which can take advantage of the underlying
theorem proving engine (the matingsearch procedure). It employs higher-order unification, finds



instantiations for quantifiers on higher-order variables, and uses a machine-oriented representation of
the wff for the search process. It is the combination of these features which makes Tps unique. Of
course, the systems described in[11] and [17] aso find proofs automatically by using techniques
which have essential relevance to higher-order logic. Tpsisfar from comprehensive, and the systems
mentioned above have many other features which are not available in TPS. Perhaps closest in spirit to
TpPsisthe work by Helmink and Ahn [30], who have also proven significant theorems in type theory
(such as Cantor’ s theorem) completely automatically.

2. An Overview of Tps

Our experience has shown that even if one is primarily interested in the problem of proving
theorems automatically, one needs good interactive tools in order to efficiently investigate examples
which illuminate the fundamental logical problems of finding proofs. TPs has been designed to be a
general research tool for manipulating wffs of first- and higher-order logic, and searching for proofs
of such wffsinteractively or automatically, or in a combination of these modes.

TPs handles two sorts of proofs:

1. Natural deduction proofs (natural deductions). These are human-readable (though at
present boringly detailed) formal proofs. Examples are given in the figures below. In
these examples we use Church’'s convention® that a dot in a wff stands for a left
bracket whose mate is as far to the right as is consistent with the pairing of brackets
aready present and the well-formedness of the formula. See [4] or [7] for more details
about this formulation of natural deduction.

2. Expansion proofs. These are described briefly in[8], and studied in[38], [39], [40],
[45], [46], and [47]. The structure of an expansion proof is closely and directly related
to the structure of the theorem it establishes, and provides a context for search which
facilitates concentrating on the essential logica structure of the theorem. At the same
time, it abstracts from many details of concrete deductions. This balance between
preservation of formula structure (compared to resolution refutations, for example) and
abstraction of proof structure (compared to sequent derivations, for example) makes
expansion proofs universal structures for cut-free (or normal) proofs. Wallen
[56] provides further evidence for this by showing how expansion proofs can be
adapted naturally to non-classical logics. Despite their many advantages, expansion
proofs have a severe deficiency in that they are distant from formats which can be used
effectively by humans.

TPs has facilities for searching for expansion proofs automatically or interactively, trandating
these into natural deduction proofs, constructing natural deduction proofs interactively, translating
natural deduction proofs which are in normal form into expansion proofs, and solving unification
problems in higher-order logic, as well as a variety of utilities designed to facilitate research and
efficient interaction with the program.

The ability to trandate between expansion proofs and natural deduction proofs is one of the

9As noted on page 75 of [19], the use of dots to replace brackets was introduced by Peano and was adopted by Whitehead
and Russell in [57]. Church’s convention is a modification of theirs.



important and attractive features of TPS. It permits both humans and computers to work in contexts
which are appropriate to them. Also, we are much more confident that TPs has correctly proved a
theorem when it presents us with a proof in natural deduction style than we would be if it simply
indicated that it had found an expansion proof.

TpPs has a number of top levels, each with its own commands. The main top level is for
constructing natural deduction proofs, and there are others devoted to matings and expansion proofs
and to higher-order unification problems. Another top level is a formula editor which facilitates
constructing new wffs from others already known to TPS. There are editor commands for
A-conversion, Skolemization, transforming to normal forms, expanding abbreviations, counting
vertical and horizontal paths, and many other manipulations of wffs. When one enters the editor,
windows display the formula being edited and the particular part of the wff oneis focused on.

Many aspects of the program’s behavior can be controlled by setting flags, and there are over
300 of these flags. TPs has a top level called Review for examining and changing the settings of
flags, and for defining and reusing groups of flag settings called modes.

Still another top level is alibrary facility for saving and displaying wffs, definitions, modes, and
disagreement pairs for higher-order unification problems. Definitions can be polymorphic (i.e.,
contain type variables), and can contain other definitions to any level of nesting. When TPs retrieves
a definition or theorem, it retrieves al the necessary subsidiary definitions. When TPs finishes
proving a theorem, information about the heuristics used and statistics about the search can be stored
automatically with the theorem in the library.

Yet another top level, caled Test, permits one to set up experiments in which TpPs will
automatically try to prove atheorem a number of times, with different modes for each run, and record
which mode produces the quickest proof. Thistop level is still rather unsophisticated.

TPS uses a type inference mechanism based on an algorithm by Milner [41] as modified by Dan
Leivant. For example, we supply the following description of a wff: "a subset b and f(DB)[g X(G)]
inaimplies b union ¢ = d". The notation f(DB) means that f has type (0B), i.e., that it is a function
mapping objects of type 3 to objects of type d. Similarly, the notation x(G) means that x has typey.
From this information TPS determines the types of the function g and the sets a, b, ¢, and d, and (if
oneis using the X11 window system on one’ s workstation) prints the wff as

8,5 L b,y Ofg [y, x ] D allbOcy=d,

TPs understands various conventions for omitting brackets, but by changing a suitable flag one can
make TPs print the wff above as

[[a,s O bysl D[fs [95, 11 O &l O [[b T c sl =dyl.
The display of type symbols can be suppressed. (Thisis particularly appropriate when displaying wffs
of first-order logic.)

When proving a theorem automatically, one presents the theorem to TPS in the readable form
illustrated above (and in the examples in section 6), and all the processing necessary to put the
theorem into the form used by the search processis done automatically.

TpPs can display wffs in the two-dimensional format (called a vpform) which was introduced in
[5] to help one visualize the vertical paths through the wff. Examples are given in Figures 5-3 and
5-4 below.



Proofsin natural deduction style can be printed in files which are processed by Scribe or Tex, so
that familiar notations of logic appear in printed proofs as well asin wffs displayed on the screen.

When one is working to construct a proof interactively, the proof can be displayed in a window
called a proofwindow, which is updated automatically whenever a command which changes the proof
is executed. Another proofwindow displays only the "active lines' of the proof, facilitating
concentration on the essentials of the problem. One can work forwards, backwards, or in a
combination of these modes, and one can easily rearrange proofs and delete parts of proofs.
Complete or incomplete proofs can be saved in files, and read in at another time for continued work.
The entire sequence of commands which have been executed can a so be saved, and re-executed later.

When trying to understand someone else’s natural deduction proof intuitively, it is sometimes
more informative to watch the proof being constructed (working backwards and forwards at
appropriate times) than to read the finished proof. TPS can trandate an expansion proof into a natural
deduction one step a a time, each prompted by the user, who can watch the natural deduction
growing in the proofwindows at leisure.

Online help is available for all commands, as well as for their arguments. Considerable
documentation [9], [10], [14], [35], [42], [48] has been written, though more is heeded. The Facilities
Guides are produced automatically.

For a number of years the purely interactive facilities of TPS have been used under the name
ETpPs (Educational Theorem Proving System) by students in logic courses at Carnegie Mellon to
construct natural deduction proofs. Students generally learn to use ETPS fairly quickly just by
reading the manual (which contains some complete examples) and playing with the system. ETPS
permits students to concentrate on basic decisions about applying rules of inference while
constructing formal proofs, gives them immediate feedback for both correct and incorrect actions, and
relieves them of many of the trivial and burdensome details of writing proofs. After reviewing eight
programs which support the teaching of logic, the authors of [26] (which was partialy reprinted in
[25]) concluded "For elementary and advanced courses in mathematical logic for students with a
formal background, we choose ETPS, a powerful tool that is also easy to learn.”

If the teacher of a course using ETPS wishes to use a set of rules of inference which is different
from the set which comes with the program, it is quite easy to do this by using what is called the
RULES module of TpPs. One simply describes the new rules in asimple lisp meta-language (using the
existing rules as examples), and uses commands in TPS to create the lisp code for executing these
commands. (Of course, much more work would be required if one aso wished to be able to
automatically trandate expansion proofsinto natural deductions using different rules.)

TpPs is a large program whose uncompiled source code contains more than 114,000 lines
(including comments). The compressed tar file for distribution of TPs, which contains documentation
as well as the source code, occupies about 3.2 megabytes. TPsS is portable, runs in a variety of
implementations of Common Lisp, and has been distributed to a number of researchers.10

10| nformation about distribution of TPS can be obtained from the TPS World-Wide Web home page at
http://ww. cs. crmu. edu: 8001/ af s/ cs. cnu. edu/ user/ andr ews/ www/ t ps. ht m , or by sending email to
Andrews+@cmu.edu.



3. Tacticsand Proof Transations

The basic tools in Tps for automatically applying rules of inference to construct natural
deductions are tactics, which can be combined using tacticals[27]. A tactic examines a given goal
situation (the problem of deriving a conclusion from a set of assumptions) and reduces it to the
problem of solving a number of subgoals. This is done by applying rules of inference (forward or
backwards) to derive new proof lines or to justify certain lines of the proof while introducing other
lines which may still require justification.

One can use tactics to speed up the process of constructing proofs interactively. TPS has a
command called GO2 which calls a number of tactics to apply mundane rules of inference to
construct the easy parts of the proof, and quickly bring one to the point where some judgement and
insight are needed. The user can choose whether or not to be prompted for approval before each of
these tacticsis applied.

The main use of tacticsin TPSisto trandate an expansion proof into a natural deduction by the
methods of [46]; in this context, the tactics can consult the expansion proof for useful information
through a number of predefined functions. We give two paradigmatic examples of such functions.

When proving a goal [A 0 B] from some assumptions, we may need to consult the expansion
proof to determine if A by itself aready follows from the assumptions. If this is the case, we can
apply digunction introduction on the left. If not, the "digj-left" tactic fails, i.e., it does not apply. If it
and its dual "dig-right" both fail, we probably want to defer a decision on the goal and try to reason
forwards from the assumptions, or try an indirect proof. An example where an indirect proof would
be appropriate is [JA OA]. When proving [A O B] from [B [ A], we need to distinguish the two
cases (either B or A), before we can proceed with the digunction introduction in the two subproofs.
Expansion proofs are crucial in determining such information, as in general it is undecidable whether
A or B follows directly. Other proof formats may also contain enough information to answer such
guestions, but in many cases it is obscured by preprocessing or other idiosyncrasies of various data
structures devised for search.

Another example isagoal of the form [XA. In this case, we can determine from the expansion
proof whether there is a substitution term t for x such that [t/X]A is provable from the current set of
assumptions. If so, we can derive the goal by existential generalization; otherwise, we might have to
postpone application of this rule. In some cases, the expansion proof might even indicate that only
the rule of indirect proof will make progress.

Basic tactics may check conditions on the expansion proof and apply appropriate inference
rules. They can be combined with other tacticsin different ways which can lead to different styles of
proof construction. The current TPS system contains a number of basic styles which can additionally
be modified through flags. The styles differ in their preference for certain inference rules and in the
granularity of the rules applied. For example, one tactic applies Rule P[7], which uses arbitrary
propositional tautologies, while another uses only simple rules of inference. Proofs constructed using
the latter tactic are more appropriate for students of logic early in their education, while those
constructed using the former are often more appropriate for mathematical arguments. Using the
former tactic, TPs produces a one-line proof of [[P, =Q_] =R ] =[P =[Q = R]], but when it uses the
latter, it produces a proof 170 lines long.

The currently implemented tactics almost always produce natural deductions in normal form.



This is the primary limitation of the current system, but it is clearly a consequence of the basic
analytic structure of expansion proofs (and machine-generated proofs in general). The only exception
is the application of symmetric simplification [47] to introduce simple variations of the law of
excluded middle into the deduction.

TpPs also partially implements a trandation in the other direction, mapping norma natural
deductions into expansion proofs. The utility of this trandation is severely limited by the current
restriction to normal deductions and has not been fully explored.

While considering how to translate expansion proofs into natural deductions, we have come to
consider various aspects of the question: "How can we take advantage of the information in an
expansion proof for a theorem A when constructing a natural deduction for A?* It is the form of the
natural deduction which is of primary concern; we are not content with constructing an arbitrary one
from a given expansion proof.

Trandating back and forth between natural deductions and expansion proofs can be used as a
mechanism for intelligent restructuring of natural deductions. This mechanism can transform the
structure of a natural deduction rather drastically. For example, the proof in Figure 3-1 was trandated
into an expansion proof, and then back to a natural deduction using symmetric simplification to
produce the proof in Figure 3-2. The original proof consisted of a rather unintuitive, brute force,
indirect proof, while the transformed proof identifies the crucia case distinction which should be
made: either "P" is true everywhere or not. An even simpler proof could have been obtained using
the lemma [Ox P x O Ox [P x], which is beyond the scope of our current methods. (See[47] for
further discussion.)

Figure 3-1: Origina proof of X2119

(1) 1 - Oy Ox .Py OPX Assune negation
(2) 1 |- Oy .Ix .Py O P x Neg: 1
(3) 1 - x .Pyl OPXx u: ylt2
(4) 1 F x .OPyl OPx Neg: 3
(5) 1 - x .Py2 0P x U: y2 2
(6) 1,6 - OPylOPpy? Choose: y?2
(7) 1 - Ox .OPy2 0P X Neg: 5
(8) 1,6,8 |- OPy20OPys3 Choose: y3
(9) 1,6 - PylOomry Neg: 6
(10) 1,6 - Pyl Conj: 9
(11) 1,6 - [P ¥2 Conj: 9
(12) 1,6,8 |- Py2OPy3 Neg: 8
(13) 1,6,8 |- Py?2 Conj: 12
(14) 1,6,8 |- [P ys3 Conj: 12
(15) 1,6,8 |- O Rul eP: 11 13
(16) 1,6 - O Rul eC: 7 15
(17) 1 - O Rul eC. 4 16
(18) |- Oy Ox .Py OPXx Indirect: 17

The equality relation is ubiquitous in mathematical reasoning, and special mechanisms for
dealing with equality, such as those in [24] and [53], are clearly needed. At present, TPS has no such
mechanisms, and simply defines equality by the Leibniz definition [Ax, Ay, Oqg., .gx 0 qy] or by



Figure 3-2: Transformed proof of X2119

(1) |- Ox P x O x P x Rul eP
(2) 2 |- Ox P x Case 1: 1
(3) 2 |- P w Uu: w?2
(4) 2 - PylOPw Deduct: 3
(5) 2 - Ow.PylOPw UGen: w 4
(6) 2 - Ox .Pyl OPXx AB. 5
(7) 2 - Oy Ox .Py OPX EGen: yl 6
(8) 8 |- Mx P x Case 2: 1
(9) 9 |- Oy Ox .Py O P X Assume negation
(10) 10 - [P y2 Assune negati on
(11) 10 |- Py 0OPX Rul eP: 10
(12) 10 - Ox .Py20PX UGen: x 11
(13) 10 - Oy Ox .Py OP X EGen: y2 12
(14) 9,10 - 0O NegElim 9 13
(15) 9 - y2 Indirect: 14
(16) 9 - DOy2 Py? UGen: y?2 15
(17) 9 - Ox P x AB: 16
(18) 8,9 - 0O NegElim 8 17
(19) 8 - Oy Ox .Py OP X Indirect: 18
(20) - Oy Ox .Py OPXx Cases: 1 7 19

the extensional definition [AX,; Ay, Uz;x z =y 7] for equality between functions or sets, and uses
ordinary laws of logic to prove results involving equality. An example of thisisin Figure 3-3, where
we show the main part of a proof constructed automatically for THM104. (This theorem and the
definition of U are discussed further in section 6). In [46] it was shown how an expansion proof for a
theorem involving equality can be trandlated into a natural deduction containing traditional equality
inferences, and this has been implemented in TPS. The application of this feature is controlled by the
flag REMOVE-LEIBNIZ. Thus, when we change the value of this flag from NIL to T, the same
expansion proof which generated the natural deduction in Figure 3-3 generates the onein Figure 3-4.

Figure 3-3: Main part of proof of THM 104 with REMOVE-LEIBNIZ set to NIL

(1) 1 UX =UZ Hyp
(2) 1 Ay, [X, =Y] =Ay .Z, =Yy Equi vW fs: 1
(3) 1 Hlooq) - [AY, - X, =yl Oq.Ay .Z, =y Equality: 2
(5 1 |- [Aw, .w X] [Ay, . X=y] O[Aaw.w X .Ay .Z =Yy

u: [Aaw, .wX] 3
(6) 1 |- X, =X0O2Zz =X Lanbda: 5
(7) - d X, 09X Rul eP
(8) |- g, -9 X, O g X UGen: q,, 7
(9) - X, =X Equality: 8
(10) 1 |- Z, = X, MP: 9 6
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Figure 3-4: Main part of proof of THM104 with REMOVE-LEIBNIZ setto T
(1) 1 UX, =UZ Hyp

(2) 1 Ay, [X =yl =A .Z, =Y Equi vWfs: 1
(3) - X, = X Assert REFL=
(4) |- [)\y(x X, =yl X Lambda: 3
(5 11 [Ay, .Z =yl X, Subst=: 4 2
(6) 1} z, =X, Lanbda: 5

4. Automatic Search

When one asks TPs to find a proof for atheorem automatically, it starts out by searching for an
expansion proof of the theorem, and then translates this into a natural deduction proof. It sets up an
expansion tree to represent the wff, and searches for an acceptable mating [5] of its literals. (An
expansion tree which is appropriately expanded and has an acceptable mating is an expansion proof.)

The search process is controlled by a number of flags. Ideally, TPs would have heuristics to
decide how to set these flags, but at present the user does this interactively before starting the
automatic search. The flags provide a convenient way to explore many different aspects of the
problem of searching for proofs.

When one is seeking an expansion proof for a theorem of higher-order logic, not all necessary
substitution terms can be generated by unification of formulas already present, so certain expansion
options [8] are applied to the expansion tree which represents the theorem. In[8] we discussed
expansion options which consisted of applying primitive substitutions to predicate variables. These
substitutions introduce a single quantifier or connective, and contain variables for which additional
substitutions can be made at a later stage. However, we do not yet have good heuristics to guide the
process of applying primitive substitutions incrementally, so we currently use a procedure which
introduces substitution terms containing more logical structure, and then searches for a mating
without making further substitutions for the variables in the substitution terms except as dictated by
the unifier associated with the mating. In order to limit the number of forms which must be
considered for the substitution terms, we often use (in addition to projections) terms whose bodies are
in prenex normal form with matrix in conjunctive or digunctive norma form. We call these
substitutions gensubs (general substitutions). Primitive substitutions are special cases of gensubs.
The logica complexity of the gensubs which Tprs will attempt to apply is limited by a flag called
MAX-PRIM-DEPTH. Examples of gensubs for r_, o, are given in Figure 4-1. The gensubs for a
variable are determined (up to renaming of auxiliary variables) by the type of the variable. Since a
gensub substitutes a term for just one variable, we shall sometimes use the name of the gensub to
denote the substitution term. The types of quantified variables in gensubs (such as 3 in the figure) are
chosen from a small fixed set of types which is specified as the value of the flag PRIM-BDTY PES.
One can permit TPs to apply arather naive algorithm for choosing this set of types by setting another
flag, called PRIM-BDTYPES-AUTO.

Different sets of expansion options are applied to create different expansion trees which are all
subtrees of a master expansion tree. The sets of expansion options are generated in a systematic and
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Figure4-1: Gensubsforr
Gensubs wi th MAX- PRI M DEPTH 2:

oB(oB)

PO Al Awlorl o oowt w2 Or2 oowh o wP

PL Ay Ao r3 o owh w2 Ord s oowh w?

P2 Al AwP, whorSo oowl wP

P3  Awl; A, Cwd, ré . oowl w2 wi

P4 A, A2y O3, r7 o wh w? wd

P5 Awl, Aw?, Ot r8 o oowh w2 wh Or8 o wh w? wh
P6  Awl y APy Oty r10 o oowl w2 wh Ol oowl w2 wh
P7  Awhp A, Owhy ri2 . oowt w2 wh O r18  oowh w? wh
P8 Awl y AwZ, Owhy ri4 . oowl w2 wh Or1s o owh w2 wh

Exanpl es of additional gensubs with MAX- PRI M DEPTH 3:

P13 )\vvl )\WZ [w5 Dwﬁ.

[r opppop WE W WP W D r At W W W W
O [r42 J— w w2 we w4 OBBB(OB) w w2 we whj
0 [r440888(0m wt w2 we wh Oré oBBB(oB) w w2 WP whj
P16 )\vvl )\WZ DW5 Dwﬁ .
[r opppop W W WP WP D rSY g W WE W WP
0 [r60 J—— w w2 we w6 oBBB(oB) w w2 WP whj
0 “620333(03) wt w2 we wP [rb OBBB(()B) wl w2 WP wh]

exhaustive way whose details are determined by certain flags. Thus a potentialy infinite list of
subtrees is generated; smaller subtrees are explored before larger ones in an attempt to keep the
search space manageable. Of course, this blind generation of sets of expansion optionsis rather crude.
We look forward to the development of heuristics and metatheorems to improve the sophistication of
this process by guiding or restricting it.

Before searching for an acceptable mating of the literals in a subtree, TPS converts the subtree
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into an alternative representation called a jform (junctive form). If the connectives truth and falsehood
occur, they are eliminated by applying the relevant laws of propositional calculus. Then TPs tries to
build up a mating which spans every vertical path through the jform by progressively adding links to
span the paths. When working on higher-order theorems, it uses Huet's higher-order unification
algorithm [32] to check the compatibility of the connectionsin the partial mating. A unification treeis
associated with the partial mating, and when a new connection is added to the mating, the associated
disagreement pair is added to al the leaves of the unification tree. When incompatibilities are
encountered, the process backtracks. Since higher-order unification may not terminate, TPS is not
permitted to generate nodes of the unification tree with depth greater than the value of the flag
MAX-SEARCH-DEPTH. (If this flag is set to a high value, Tps will often spend an enormous
amount of time generating higher-order unification search trees.) The search for an acceptable mating
within a given jform may not terminate, so when the time spent on it reaches the value of the flag
SEARCH-TIME-LIMIT, Tps temporarily abandons this jform and tries another one. It may return to
that jform later, but there is also a limit (specified by the flag MAX-SEARCH-LIMIT) on the total
amount of time which can be spent on searching for a proof in any jform. Once an acceptable mating
isfound, it is converted into an expansion proof, which is simplified by a process called merging, and
then trandated into a natural deduction proof.

Figure 4-2: Outline of proof of X5310

(1) 1 |- Orggep -Opg DXg 1 p X O0ge Opr p.jp Hyp
(2) 1 DpoBEkaApAyB-Ekprpy]px
O Opep U [AP Ay .Ox px Opyl p.jp
ul: [ApoB)\yB.D(Bprpy] 1
(3) 1| DpoBD(B[D(prpx]DE]B(OB)Dp.D(prp.jp

Lanbda: 2
(17) 1 F Opep OPyy Dz P x O p .j p PLANS
(18) = O opopy [ OPog DXg T P X O Qg Op 1 p.j pl
p.XXpx0Op.jop Deduct: 17
(19) |- Or ggop [DXog Dyg 1 Xy O Hge Oxr o x . f X]
sop) Pop - Xg P x Up.jp AB: 18

Now that we have outlined the general procedure TPS uses to find a proof, let us illustrate the
use of gensubs by discussing how TPs proves theorem X5310, which may be found at the end of
section 6. In order to understand X5310 the reader is advised to first look at the companion theorem
X5308. The outline of a simple proof of X5310 isin Figure 4-2. The theorem to be proved isin line
(19), but the alphabetic variant of it in (18) is easier to work with. The problem is to derive (17)
(which isthe Axiom of Choice) from the hypothesisin (1). The key step isto instantiate the quantifier
Or gopy 1N (1) with the term [Ap,, Ay,.[X; p X U p y], which we shall call N. Doing this yields (3),
whose antecedent is easily provable, and whose consequent is (17).

In the search for a proof, TPs eventually considers the set of expansion options which simply
substitutes gensub P7 of Figure 4-1 (which is aso displayed in Figure 4-3) for Fopop: 1PS finds an
acceptable mating of the associated jform, and applies the unifier associated with the mating to the
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Figure 4-3: Substitution termsfor r for proof of X5310

oB(op)
Ori gi nal gensub:
P7  [Awl g Aw?, Owh ri2 o oowh w2 wh O ri8 0wl w? w]

Result of substituting for the free variables of P7:
Mo [Awh g, Aw?, Owtg wh w2 O Ot wh

Al phabetic variant of M

ML [)\poB }\yB Oxg.py OLp X]

Crucial substitution termin Figure 4-2:

N [Apy Ay OXg p x O p y]

free variablesrt2 ., o and r'3 . . of P7 to obtain the wff M of Figure 4-3; an alphabetic variant of
this is the term with which TpPs instantiates O spop) in the natural deduction proof. For convenience
we display the alphabetic variant M1 of M, which can be transformed to the wff N mentioned above
by applying elementary logical equivalences.

Note that while the quantified variable in P7 occurs in both the left and the right scopes of the
disiunction, this is not the case for M1. Thus the gensub P7 is truly a general wff which can take
severa forms, one of whichisM.

While the use of prenex normal forms in this context drastically reduces the number of sets of
expansion options which must be considered, and seems not to complicate the search for an
acceptable mating as long as the quantifiers thus introduced need not be duplicated, using a prenex
formula such as M instead of a miniscope formula such as N may produce a rather awkward natural
deduction proof. The natural deduction proof for X5310 which TPs constructs using M is 57 lines
long and is rather clumsy. To remedy this, if the flag MIN-QUANT-ETREE is set to T, after the
search is completed and the actual terms needed to instantiate quantifiers on higher-order variables
are known, these terms are put into miniscope form, an expansion proof using these terms is
constructed, and it is trandlated into a natural deduction proof. The proof thus constructed for X5310
is 19 lineslong and very similar to that outlined in Figure 4-2.

As noted in [8], restricting expansion terms to some normal form may (depending on other
details of the implementation) entail loss of completeness of a proof procedure, but for the present we
are content to explore the benefits of using gensubs. Questions related to combining this method of
instantiating quantifiers on higher-order variables with other methods, such as those of [11], [16], and

[17], need further study. Some of the examples found in these papers are discussed below.

TpPs can duplicate quantifiers during the search for a mating by using outermost-quantifier
duplication [5] or by using path-focused duplication [33]. It can also generate sets of expansion
options in several ways, and there are several implementations of both first- and higher-order
unification algorithms. These basic facilities are combined into a number of search procedures in
TpPS. Much remains to be done in exploring the relative merits of various search techniques in
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various situations, and strategies for systematically incrementing the flags which control the size of
the multi-dimensional search space.

Some of the search procedures in TPS take into account the fact that for any subformula of the
form [A 0O B], any path which passes through A has a variant which passes through B, and both of
these paths must be spanned by an acceptable mating. Therefore, when the matingsearch procedure
comes to B, if A has no mate, then no mate for B will be sought. Also, if A has a mate, but no mate
for B can be found, then the search will backtrack, throwing out the mate for A and all links which
were subsequently added to the mating.

Since the search procedures used by TpPs treat the paths very systematically (and
unimaginatively) in their natural order, TPS requires very little space to keep track of what it has
done. (This may be contrasted, for example, with resolution systems which store vast numbers of
clauses). The higher-order unification procedure does introduce many auxiliary variables, but they
are used only briefly, and it was found that by simply uninterning them a great deal of space could be
reclaimed. Consequently, TPS can run for weeks without running out of space (particularly on
problems of first-order logic). However, for many theorems one clearly needs to use more flexible
heuristically-guided search procedures. It is a significant problem to find a good balance between
applying sophisticated search heuristics and limiting the amount of memory required to keep track of
the process of exploring the search space.

Of course, many methods could be used to find matings, including resolution [31]. The use of
resolution in this context is complicated by the facts that higher-order unification may not terminate
and that most general unifiers may not exist.

Following (and dightly extending) terminology introduced by Huet [32], we refer to literals
whose atoms are headed by predicate variables as flexible, and to literals whose atoms are headed by
predicate constants asrigid. In first-order logic all predicate symbols may be regarded as constants, so
flexible literals need not be considered. However, they do frequently occur in higher-order logic, for
example when the Leibniz definition of equality is instantiated. Applications of gensubs to the head
variables of flexible literals create even more such literals. Since flexible literals can be mated with
arbitrary literals, the search space associated with finding an acceptable mating for a wff which
contains many such literals can be extremely large. Two heuristics, each controlled by a flag, are
available in TpPs for trying to cope with this problem. First, the user can set the flag MAX-MATES to
limit the number of mates which any literal-occurrence may have. (It is fairly rare to encounter
examples of acceptable matings in which literas have many mates.) Since the algorithm for
constructing matings in TPS tries to span each path by mating the first available pair of literals, and a
flexible literal typically occurs on many paths, this limit quickly excludes from consideration many
matings which the unification process would find incompatible only after considerable work. Second,
one can rearrange the jform before the search for a mating commences. If the user sets the flag
ORDER-COMPONENTS to the value PREFER-RIGID1, TPs applies an algorithm to rearrange the
jform (using the commutativity and associativity of conjunction and digunction) so that rigid literals
tend to be encountered by the search process before flexible literals; this postpones finding mates for
flexible literals until constraints introduced by mating other literals have been introduced.

Additional complexity arises when one mates a pair of flexible literals. Mating such a pair can
cause either literal to become the negation of the other (after substitution, A-reduction, and
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elimination of double negations). Both possibilities must be considered, since the variables in these
literals may occur in other literals too. When TPs considers adding such a pair to the mating, it puts a
disagreement pair corresponding to it into the leaves of the unification tree, and proceeds with the
unification process. If this process encounters a disagreement pair of the form <A, [B>, where A
starts with a constant but B does nat, it replaces this pair with <[JA, B> and continues. Thus, in avery
economical fashion TPs finds which way of mating these literals is ultimately compatible with the
unification problem for the entire mating.

If one isworking on atheorem which is too hard for TPs to prove al by itself, one can still use
the automatic facilities of TPs to provide assistance. One can use the interactive facilities of TPs
(supplemented by GO2) to develop the general outline of the proof in natural deduction style, and ask
TPsto help by automatically proving certain lines of the proof from other specified lines.

5. An Example

One of the most interesting theorems which TPs has proved automatically is THM 15B:
Of .[g, [ITERATE+fgUX .gx=x00z.gz=zOz=x] Oy fy=y
Tps takes about 2.5 hours to prove this theorem, which asserts that if some iterate of afunction f has
a unique fixed point, then f has a fixed point. (The definition of ITERATE+ is in section 6.) The
theorem appears in [36], where it is noted that the theorem can be used in solving integral equations
of the second kind; it justifies showing that a fixed point equation has a solution by showing that the
iterated equation has a unique solution. This was posed as a problem for theorem proversin [1], and
it is gratifying that we are finally able to prove it automatically. It is ahard theorem for TPs because
so many flexible literals are created when the definition of equality is instantiated.

The very natural though overly detailed proof which Tps finds is shown in Figures 5-1 and 5-2.
Let us summarize it by providing comments for some of the lines of the proof. TPS starts out by
assuming that g is an iterate of f,

(3) 1,2 |- ITERATE+ f, g, Rul eP: 2
that x isafixed point of g,

(7) 1,2,6 |- g, % =X Rul eP: 6
and that x isthe only fixed point of g.

(8) 1,2,6 |- Oz, .9,z =12z 07z =X, Rul eP: 6

In lines (5) and (10)-(28) TPs then gives an inductive proof, based on the definition in (3), of the fact
that

(28) 1,2 - g9, [f, x] =f .9 x Cases: 23 24 27

Of course, (28) follows from the fact that f commutes with all its iterates. No knowledge or heuristics
about induction, commutativity, or iterates are built into TPS except the definition of ITERATE+.
TPs decides to prove (28), and to prove it by induction, simply by applying general logical principles
in its search for an expansion proof of the theorem. From (7) and (28) TPs concludes that
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Figure5-1: Proof of THM15B - part 1
g, . | TERATE+ f g

O .gx=x00z .gz=z0z-=xX Hyp
| TERATE+ f g, 0k .gx =x 00z .gz=2z02z=xX
Choose: g, 1
| TERATE+ f g, Rul eP: 2
X, .9, x=x 00z .gz=2z02z =X Rul eP: 2
Dpo(“).pf“DDj“[pj Op .M f .j x] Opg,
EquivW fs: 3
g, X, =x00z .gz=z0z=xX Choose: x, 4
g, X, =X Rul eP: 6
Oz, .9,z =2z 02z =X, Rul eP: 6
g, [f,x] =f xOf x =x u: [f, x] 8
[Aj, OP, .P[f, .j x] OP .j .f x] f
OO [ [A) OP.P[f .j x1 ODOP .j .f x] j
O[A OP .P[f .j x] OP .j .f x] .Axf ] X]
O[A OP.P[f .j x] OP .j .f x] g,

U: [Aj, OP.P[f.j x] OP.j.f x] 5
P, [P [f, .f x] O .f .f x]
O0j, [ OP[P[f .j x] OP.j .f x]
OOP.P[f .f .j x] OCP.f .j .f x]

oop.P[f .g,x] OP.g .f x Lanbda: 10
P, [f,.fx] OP.f . f X Rul eP
op, .P[f, .f x] OP .f .f x UGen: P, 12
aop, .P[f, .j,x] OP .j .f x Hyp
[Aw W . f w [f .j, x] OOMWW .fw .j.fx

U: [Aw W_.f w 14
W, [f, .f .j,x] ODW .f .j .f x Lanbda: 15
oW, W [f . f .j,x] OODW .f .j .f x UGen: W, 16
op, .P[f,.f .j,x] OP.f .j .fx AB: 17

op, [P [f, .j,x] OP .j .f x]

oopP.P[f .f .j x] O .f .j .fx Deduct: 18
Oj, - Op, [P[f, .] x] OCP .j .f x]

OOP.P[f .f.j x] OP.f.j.fx UGn: j, 19
0P, [P [f, .f x] O .f .f x]
00j, . OP[P[f .jx] OP.j .f x]

f

oap .P[f .f .j x] OOP . j .f X
Rul eP: 13 20
op, .P[f, .9, x] OP.g .f x MP. 21 11
g, [f, x] =f [gx] OOg [f x] =g .f x
u: [=.g9,f, x] 22
g, [f, x] =f .gx Case 1. 23
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Figure 5-2: Proof of THM15B - part 2

(25) 1,2,25 |- Og, [f,x] =g .f X Case 2: 23
(26) 1,2,25 |- 0Or Refl =: 25
(27) 1,2,25 |- g, [f, x] =f .9 x Rul eP: 26
(28) 1,2 - g, [f, x] = .0 X Cases: 23 24 27
(29) 1,2,6 |- g, [f,x] =1 X Subst=: 28 7
(30) 1,2,6 |- f, x =X MP: 29 9
(31) 1,2,6 |- Oy, .f,y =y EGen: x, 30
(32) 1,2 - Oy, .f,y =y RuleC. 4 31
(33) 1 - Oy, .f,y =y RuleC. 1 32
(34) |- o, [ | TERATE+ f g
O .gx=x00z .gz=12z02z=X]

Oy .fy=y Deduct: 33

(35) - Of,. [, [ |ITERATE+ f ¢
Ok .gx=x00z .gz=12z02z=X]
Oy .fy=y UGen: f 34

(29) 1,2,6 |- g, [f, x] =1 x Subst=: 28 7
Line (29) showsthat f x isaso afixed point of g, so it must be the same as x:
(9) 1,2,6 | g,[f,x] =f xOf x =x u: [f, x] 8
(30) 1,2,6 |- f, x =X MP: 29 9

Thus x isafixed point of f.
It is natural to wonder how such a proof can be found, so let us see how TPs does this. In the
preprocessing stage, TPS negates the theorem and eliminates the definitions, obtaining:

[f“' Egn [Dpo(n) [p f |:| DJ 1" [p j |:| p'}\x| f'J X] |:| p g]

OIXK.g x = X
O00z.0g z =12z] Oz = x]
O0y.0fy =y

It then expands the equality formulas using the Leibniz definition, and puts the wff into negation
normal form, obtaining:

O 00, [Opgy [Bp £ OO0, [pj OOp.Ax f.j x] Op 9]
O x. Og, [0 [g x] Oq x]
O00z.0g [g[gz] OO z] OOg.g z 0Oq Xx]
OO0y g [fy] Oy
It then skolemizes the formula (using capital letters as skolem constants) and displays the formula
(with type symbols deleted) in a vpform which is shown in Figure 5-3.

TpPs then starts the search for an expansion proof. It considers, in turn, the following
substitutions for the predicate variable p,,, (shown as p? in Figure 5-3) which was introduced in the
definition of ITERATE+:
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Figure5-3: Vpform for THM15B

Op2
| | ,LEAF14 | |
|LEAFLL | p2 [30 p? | _LEAF10 |
(p2 FO O | | O p2 & |
| |, LEAFIS |
| | Dp2 [Ax1 FO .30 p2 x1] | |
0q©
| LEAF21 LEAF22 |
1m0 [@ X0 O q° X |
0z0
| |  LEAF28 | |
| |@ 20 [ 201 | Oqt |
| ] | O |LEAF32  LEAF33] |
|| LEAF20 | |t 20 Oat X2 ||
|| 0P z0 z | |
Oy©
|  LEAF37 |
IQl yO [FO yO] I
|  LEAF38 I
| | ot y0yo
oset-0: None.
Oset_;: ;ﬁn' p o(tr) w2 g p 0(“) %
oset - 2: o SR %o
oset - 3: )\V\fl:: Ij’\%(lolu p 0(01)(11) V\/T W3
oset-4f AWS,l DWA'O. p o(o1)(i1) W w
oset - 5: )\V\p” D/VS o O(OI)(II) V\p VV5 0 p 8(0|)(Il) V\ﬁ VV5
oset-6: AW WP . w we O W w

1 ol* p o(or)(1) o(ot)(1)
It spends about 19 minutes expl oring each of these expansion options. Finally it comesto
. 7 7 12 7
oset-7: Aw8 Ow .pl O(OI)(“) wsw Op o(o0() w8 w
It applies the substitution and preprocesses to obtain a jform which is displayed in Figure 5-4.
Tps searches on this jform for an acceptable mating, and finds the following:

(LEAF28 . LEAF162) (LEAF38 . LEAF33) (LEAF37 . LEAF32)
(LEAF29 . LEAF22) (LEAF21 . LEAF161) (LEAF159 . LEAF156)
(LEAF158 . LEAF155) (LEAF150 . LEAF149)

The substitution associated with the mating is:
q0OI -> ;\\,\,122l QP [|:0ll Xol] CFO 22
ZO -2 Fou XOI

ol
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Figure 5-4: Vpform for expanded form of THM 15B

Opllpl2
Owd 7
| LEAF155 LEAF156 |
| LEAF149 | | p11awl? O pl2awd?|
| EpllFOV\M DW18
| | O LEAF158 O | LEAF161 LEAF162 |
| | | LEAF150 | | Cpl[ AxIF0. ax1i1we | | p1ld@wie 0O pl2cd®wi8| | |
| Cpl2FOwd |
LEAF159
I | DpL2[AxIFO. Ix v | I
0q©
| LEAF21 LEAF22 |
|0 [ X O q° X0 |
0z0
| ] LEAF28 | |
| | @ 20 [ 201 | Ogt I
|| | O |LEAF32 LEAF33] |
| | LEAF29 | | gt z0 Ogl X0 ||
|| 0P 20 20 I I
Oy©
| LEAF37 |
Icﬂ y? [FO yO
| LEAF38 |
| ot y0yo |
wher e
J is [J0 .awB Ow .pll wB wW O pl2 wB w]
Wis [W.Aaw8 OwW . pll w8 w O pl2 w8 wj
Wis [W . Aawd Ow .pll w8 w O pl2 w8 wj

P o> Awd23 Awd24 wi24 FO 23 X0

o(or)(it 1" ol 1" 1

VVl?ou -2 )\\Nl25l V901(0(11)) [)\WBH rIO(O(OI))' )\W?or W7 [Fou' \NS XOI]
O O/ wB. FO X0]. FO w25

Wlsou -z )\lezl (\pou [Fou XOI] W122

P12 00 -> w20 w2l o2l wi20 F0 - X0

qlol -z )\lezl Qlou XOI Wl22

y°, > X

Let us examine the computation of the important compound substitution for the predicate
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The substitution term from oset-7 is:
7 12 7
0(01)(11) WB w' [ p o(on)(1) WB W

Applying the substitutions for ptt, |\ ~and p'2_ |, - produces:

AB, OW/ . [AWL23  Awd24  wi24 O 123 x01 w8 w/
0 )\\/\/120 >\wl21 . Owt2l, wl20 FO 0] w8 Wi

A-normalizing transforms thlsto.

MwBOw/ w/ [FO w8 X0] O ow'. wB. FO X0

TPs makes al phabetic changes of the variables to convert this to:

AN, OP,.P[F0.j X0] ODrP.j.FO X0

TPs then constructs an expansion proof from this mating, merges it, and constructs the natural
deduction proof in Figures 5-1 and 5-2, guided by the information in the expansion tree. To see how
thisworks, let uslook at two stages in this process.

By applying rules of inference in both forward and backward directions in a rather natural way,
and using the substitutions for zoI and yol, TPs constructs the partial proof displayed in Figure 5-5. At
this stage the proof contains only lines (1)-(9) and (30)-(35). TPs is planning to prove (30), and it
knows that only (5), (7), and (9) need be actively used to do this. The other lines are inactive, and will
not be used again in the process of constructing the proof. This status information is represented
simply as (30 9 7 5); the first entry is the number of the line to be proved, and the other entries are

numbers of lines which may now be used to prove that line. In the figure we display the active lines
and only the numbers of the inactive lines which are now present in the proof.

variable p

o(1)"

A Ow/ . pt

I

Figure5-5: Early stage in construction of proof of THM15B

(1-4) : , ,
(5) 1,2 |- Dpo(“).pf“DDj”[pj Op .M f .j x] Op g,

EquivW fs: 3
(6)
(7) 1,2,6 |- g, %X, =X Rul eP: 6
(8)
(9) 1,2,6 |- g,[f,x] =f xOf x =x u: [f, x] 8
(30) 1,2,6 | f, x =x PLAN21
(31-35)

TPs next derives (10) by applying universal instantiation to (5), using the substitution for p
discussed above. This makes (5) inactive, so the status information is now (30 10 9 7).

With a few more inferences the proof reaches the form in Figure 5-6. Now the status
information is (28 11 9)(30 29 11 9), which means that both (28) and (30) are to be proven.

It is hard to explain exactly how TpPs decided to infer (29) from (7) and (28) without a detailed
discussion of the tactics for dealing with equality which were invoked by setting the flag REMOV E-

o(11)
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Figure 5-6: Later stagein construction of proof of THM15B

(1-8)
(9) 1,2,6 |- g,I[f,x] =f xOf x =x u: [f, x] 8
(10)
(11) 1,2 |- op, [P [f, .f x] OP .f .f Xx]
Oo0,[ OP[PI[f .j x] OP .j .f x]
oop.pP[f .f ) x] O .f .j .f X]

Ooop.P[f .g,x] OP.g .f x Lanbda: 10
(28) 1,2 - g, [f, x] = .g X PLAN28
(29) 1,2,6 |- g, [f,x] =1 X Subst=: 28 7
(30) 1,2,6 |- f, x =X PLAN21
(31-35)

LEIBNIZ to T for this proof. Suffice it to say that (7) is descended from LEAF21 and LEAF22 in
Figure 5-4, (28) is descended from LEAF161, and LEAF21 is mated to LEAF161 in the expansion
proof. (The process is easier to understand when REMOVE-LEIBNIZ is NIL, but the proof thus
obtained is not so elegant.)

Similarly, the antecedent of (9) is descended from LEAF28 and LEAF 29, and (29) is descended
from LEAF22, so the mating between LEAF29 and LEAF22 guides the derivation of (30) by Modus
Ponens (MP) from (9) and (29).

Since the consequent of (11) is essentially the assertion in (28) (modulo the Leibniz definition
of equality and the symmetry of disjunction), it can be seen that the same general methods suffice to
compl ete the construction of the proof.

6. Theorems Proved Automatically

While Tpsis till in arudimentary state as a system for automatically proving serious theorems
of type theory, it is awell developed platform for experimenting with these theorems and developing
ideas about the basic issues involved. In this section we discuss some examples of theorems which
TPs has proved completely automatically.

Naturally, TPS can be used to prove theorems of first-order logic, but we focus mainly on
examples from higher-order logic. (Apart from the development of path-focused duplication, a
relatively small part of the development effort for TPS has been devoted thus far to certain basic
issues of search which are important for first-order logic.)

For ease of reference, we list the theorems in the order of their |abels; these simply reflect the
way examples have been put into our library over the years. Theorems (such as X2129) whose names
start with an "X" are exercisesin [7] (or will be exercisesin the next edition), and are available in TPS
and ETPS whether or not one has any library files.

When TPs proves a theorem in automatic mode, it records the time used to do a number of
things, including searching for an acceptable mating (search), merging the expansion proof (merge),
trandating the expansion proof into a natural deduction proof (translate), and printing the proof on
the screen (print). It also records the total time used to do al these things and produce a natural
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deduction proof of the theorem (total). For each example below we give the internal runtime minus
garbage-collect time used by TpPs for some or al of these processes while running on a Hewlett
Packard Apollo 9000 model 735 workstation equipped with 208 megabytes of RAM. Times are in
seconds (secs), minutes (mins), or hours (hrs), as seems most convenient. These numbers are useful
only for their approximate magnitudes; they are quite dependent on how various flags are set, and in
many cases probably do not represent optimal settings of the flags. They fluctuate both up and down
as changes are made in TPs. It should also be noted that the time to produce output on the screen is
not negligible. In one run for THM47 which is reported below, the total runtime was 25.08 seconds.
However, when we ran this again in a mode which minimized output to the screen, the total runtime
was 22.67 seconds.

It will be noted that in many cases the process of translating an expansion proof into a natural
deduction takes a surprisingly large amount of time, even though it involves no deep search or
backtracking. This is because the conditions checked on expansion proofs in some steps of the
tranglation are computationally expensive in order to arrive at the most natural proof possible with the
current tactics. Furthermore, no attempt has been made to optimize this part of the program.

Definitions

The definitions below, which are used in various theorems we shall discuss, are built into TPS
or stored in the TPs library, and the user can easily add more definitions to the library. The way TPs
handles definitions during the search process is determined by the settings of certain flags, such as
REWRITE-DEFNS and REWRITE-EQUALITIES. When these flags are set to T, TPs simply
eliminates these definitions from the theorem while preparing the expansion tree for the search
process. In some cases, this expands the search space in a very undesirable way, and more
sophisticated ways of deciding when to instantiate definitions in the search process are clearly
needed. (Discussions of this issue may be found in[12], [15] (where "peeking" is discussed), and
[58].) Once TPs finds an expansion proof, the translation tactics cause the definitions to be handled
rather naturally in the final natural deduction proof.

We remark that awff of the form [Ax, B], where B is a statement about x ,, denotes the set {X_ |
B}. Also, [P, x ] means[x € P, ]. Binary operators are often written in infix position.

€ (set membership): [Ax, Ap,, P X]
O (subset): [Ap,, Ary, OX, .px Orx]
O (union): [Ap,, Ar,, Az, .pzUOrZ]
[] (union of acollection of sets): [AW, o) AXy BBy - W SIS X]
N (intersection of a collection of sets): [Aw,,,, AX, Us,,.w s sx]
o (compoasition of functions): [)\f(IB )\gBX )\xx f.gX]
INJECTIVE: [)\faB Oxg Ly fx=fyOx=y]
# (image): [)\fmB AX oAz, [0 xthz= 1 .
f# fop Xl 1S theimage of the set x , under the function f
U (unit set): [Ax, Ay, X =VY]
[U X] is customarily written as{x} .

it
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IND: Op,, .p0, 00x [pxOp.S, x] OOxpx
IND expresses a simple induction axiom for the natural numbers. 0, is zero, and
S, isthe successor function.

ITERATE+: [AMf_ AQ,, OPogaa) pfO0 [PjOp.fejlOpd]
[ITERATE+ f g] meansthat g is a composition of one or more copies of f. Note
how easy it is to express this inductive definition in type theory.
ITERATE: [Af,, Ag,, UPoac)P [Au, U] OO, [PjOpfej]Opg]
[ITERATEf g] means that g is a composition of zero or more copies of f.
” MG, X Dy[3 h[fxyl=g[hx] .hy]
[BI-FOMOMZ f g] means that h is a homomorphism from objects of type B to

objects of type a, where f and g are binary operators on the types B and q,
respectively.

MAPS: [)\h Au, )\v Ox,.ux Ov.hx]
[MAP§h u v] meansthat the function h maps the set u into the set v.

-CLOSED: [Ah,, Au_, MAPS o0 (00)(a0 )huu]
[h -CLOSED u] means that the set u is closed under the function h.

HOM: Ahyg Ar, Afgs As,, Ag,,.f -CLOSED r g -CLOSED s UMAPS, hrstOOx,rxOh
f x] g. hx
[HOM hr f s g] means that h is a homomorphism from <r,f> to <s,g>, where r
and sare sets, f isaunary operator onr, and g isa unary operator on s.

HOMOM2: [Ah

(00)(oB)(crp)

Theorems

THM15B: Of .09, [ITERATE+fgOXk.gx=xU00z.gz=z0Oz=x] O0y.fy=
(search: 25 hrs  total: 2.5 hrs)
This theorem was discussed in section 5.

THM30:R  0OS =0F, #FRUO#FS (search: 0.56 secs  trandate: 1.19 secs  total: 2.52 secs)

THM47: OX, OY, .0Q, [QXOQY]=0OR,, .0Z RZZORXY
Run with MATING-VERBOSE MAX and UNIFY-VERBOSE MAX:
(search: 22.82 secs  total: 25.08 secs)
Run with MATING-VERBOSE SILENT and UNIFY-VERBOSE SILENT:
(search: 20.54 secs  total: 22.67 secs)
THMA47 shows the equivalence of two ways of defining equality in type theory:
the Leibniz definition, and the intersection of al reflexive relations.

THMA48: LIF ; [IG,, INJECTIVE F UINJECTIVE G U INJECTIVE.F o G

Trial with REWRITE-EQUALITIES setto T:

(search: 89.74 secs  total: 91.43 secs)
Trial with REWRITE-EQUALITIES set to NIL:

(search: 0.04 secs  total: 0.81 secs)

THM48 asserts that the composition of injective functions is injective. The
definition of equality which is contained in the definition of INJECTIVE is
actually not needed in order to prove this theorem, and the time required to prove
the theorem is dramatically affected by whether the equalities are instantiated or
not.
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THM67: 0S,, 0T, [SOT O Fouﬁoa) TOFS O[OS[SDOF [y, S DOS[SOG[FS])] O OS

Ox, [FIG[F S]] x=FSx] (search: 11.79secs total: 12.75 secs)

Next we have two examples which were discussed in [8] as examples of theorems which require
instantiations for set-variables which cannot be obtained by unification from literals in the theorem.

THM104: OX, 0Z UX=UZOX=Z (search: 9.67 secs  total: 10.55 secs)
The proof referred to here was obtained using the Leibniz definition of equality,
and uses a projection as an expansion term. However, if we change the value of
the flag REWRITE-EQUAL-EXT so that TPS uses the extensional definition of
equality between sets, no expansion option is needed, and the times for the proof
are: (search: 0.14 secs total: 1.22 secs)

0G,OH,.MGOMHOM [GeH] OOY,.PYOP.GY

(search: 6.13 secs  total: 6.13 secs)
THM112 asserts that for any set P, thereis a set M of functions mapping P into P
which is closed under composition. TPs quickly finds atrivial proof where the set
Mis[Aw,.Ch Oh], i.e., the empty set of functions. To make the problem dlightly
lesstrivial, we excluded this solution in the statement of THM 112A below.

THM112A: OP, [M_, .M [Ax,X] 00G, OH, .M GOMHOM [Go H] OOY .PY OPGY

(search: 4.4 mins  total: 4.4 mins)
For the proof of THM112A, Tpsfinds that it sufficesto let M be [Af, Ou.P, [f u]
0[P u]. Thiscan be rewritten as [Af, Ou.P, u O P.f u], and denotes the set of
functions which map P into itself.

THM117C: Ox , Uz [zex Oy, yexOOw.R  ywOOvex] O0Ox1 [0yl [yles ORx1yl[]
P, yl] OPx1] 00Ox2.x2es0Px2 (search: 0.19secs  total: 1.63 secs)
This is the TRANSFINITE INDUCTION theorem of [11] (page 396) expressed
in the language of type theory. Think of Ryw as saying that y > w. The theorem
asserts that if R is a well-founded relation and P is an inductive property over R

restricted to the set s, then everything in s has property P.

THM129: IND OOx +,, 0 xxOOx Oy, Oz [+yxzO+[S,y] x.Sz] OOy Ox [z+yxz
(search: 0.57 secs  total: 2.33 secs)

THM130: IND Or_ 0 000x Oy [rxyOr[S, x] .Sy]OOxyrxy
(search: 0.51secs  tota: 1.18 secs)
This is a theorem in which the conclusion is weaker than the statement which
must be proved by induction. From the hypotheses TPs proves [Ix r , X X by
induction, and from this derives the desired conclusion [x [y, r, X y. No
special mechanism for deciding what to prove by induction is built into TPs; it
fals naturally out of a purely logical analysis of the structure of THM130.

THM131: Ohl, Oh2,, Osl, Of1 02, 02, 0s3,, 0f3,.HOM h1 sl f1s2 f2 1HOM h2s2 2 s3
f3'0 HOM [h2 o h1] s1f153f3

(search: 30.5mins merging 6.2 mins translate: 3.99 secs  total: 36.8 mins)
This example, which asserts that the composition of homomorphisms is a
homomorphism, was suggested in [18], though the formulation of the theorem
given there in terms of the primitives of axiomatic set theory makes it much
harder to prove. It may be enlightening to compare this with THM 133 below,

THM112: 0P, (M,

o()"
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which is much easier for TPs since the closure of the sets under the appropriate
functionsis dealt with implicitly through the use of typesin THM133.

THM138: Ohl, Oh2,, OfL  Of2,, Of3, . . HOMOM2 hi 1 f2 0 HOMOM2 h2 f2 f3 O
HOMOME [h2 - hi] 1 3 (search: 3.38 secs  total: 5.15 secs)

THM134: Oz Og, ATERATE+[AXx zZl g0 0OXx .gx =2 (search: 0.05secs  total: 1.02 secs)
THM134 can be paraphrased as saying that the only positive iterate of a constant
function is that function.

THM135: Of  Ogl,, 0g2,|TERATEf g1l OITERATEf g2 0 ITERATE f.gl o g2

(search: 3.4 mins total: 3.5 mins)
This theorem asserts that the composition of iterates of a function is an iterate of
that function.
THM141: Of .[g [feg=g.fUX.gx=x00z.9gz=z0z=x] 0y .fy=y
(search: 8.62 secs  trandate 5.69 secs  total: 16.54 secs)
This theorem, which is inspired by the proof of THM15B, asserts that if some
function which commutes with f has a unique fixed point, then f has afixed point.
THM 142 DamB Oy, Droﬁ.r = )\j[3 [yeaj] O Epo(oﬁ)(om DsoB.y eNn[#ag=p rs _
(search: 11.6 mins  total: 11.8 mins)
This theorem concerns the formulation of alemma which can be used as part of a
proof of the Principle of Inclusion and Exclusion of combinatorics. Think of a
as an indexed family of setsand s, as a set of indices; atypica set in the family
is @&,4jp Which would simply be written as g in conventional mathematical
notation. Tpsfindsthat [pr s canbe[sIr].

In the next two theorems [DOUBLE u v] means that 2u = v, and [HALF u v] means that the
greatest integer inu/2isv.

THM300A: Ou, Ov, [HALF uv=0Q,.Q0 00Q[S, 01 000x Oy [QxyIQ[SSx].Sy] OQ
uv] ODOUBLE,, 00 0O0Ox Oy [DOUBLE x y 0 DOUBLE [Sx].S.Sy] O Ou

Ov.HALFuv ODOUBLE v uODOUBLE[SV].Su
(search: 83.56 secs  total: 88.13 secs)

THM301A: Ou, Ov, [DOUBLE ,uv=0Q,.Q0 000x Oy [QxyOQI[S, x].SSy] D Quv] [
HALF, 00 OHALF[SO] 0 OOx Oy [HALF xy O HALF [SSx].Sy] O Ou

Oll

Ov.DOUBLEuv OHALFvu (search: 56.90 secs  total: 62.79 secs)

THM303: EVEN_, 0, O0On [EVEN n O EVEN.S .Sn] O[ODD, [SO] OOn.ODD n 0 ODD.S.Sn] [
IND O0On [NUMBER,, n=EVEN n0ODD n] O On NUMBERn
(search: 33.8 mins  total: 33.9 mins)
After assuming the antecedent, TPS proves [x [NUMBER , x O NUMBER .S,
X] by induction (using IND), and from this derives [in NUMBER  n. Note that a
direct inductive proof of [In NUMBER  n does not work.

BLEDSOE-FENG-SV-11: DA [A O, O0x [Ax O A1+ x] DA Nn] OP, O O0x [Px O P.1+X]

OPn (search: 0.14 secs  total: 0.61 secs)
Thisis Example |1 from [17].

BLEDSOE-FENG-SV-12: JA  [A O, O00x Oy [AxyOAT[s, x].syl DAn m]OP, nOPm

oll
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(search: 8.15secs  total: 9.91 secs)
Thisis Example 12 from [17].

NUMO16-1: 010X, [Oess, X X] OOX OY [OessX Y O0essY X] OOX divides,, X X OOX OY
0z, [Cdivides X Y [ [divides Y Z O divides X Z] O OX OY [[divides X Y [
Oess Y X] O OX less X [factoriad_plus one, X] O OX 0OY [[divides X
[factorial_plus one Y] OlessY X] 00X [prime,, X Odivides[prime_divisor, X]
X] O OX [prime X O primeprime divisor X] O OX [prime X O less
[prime divisor X] X] O prime a O OX.Cprime X O Oess a X [0 less
[factoria_plus one @ X
(search: 7.38secs merge5.73secs  trandate 6.23 secs  total: 20.79 secs)
This is example NUMO016-1 from the TPTP Problem Library [54]. It is more
commonly referred to as LS17.

SYNO031-1: (10A [g,, Aa Og[f, A]A]OOA [gAaldgAfA]O0OA OB, [[WABOg[fB] B] O
OADOB[(ABOgB.fB]OOAOB.[LJABOBa
(search: 64.08 secs  total: 65.79 secs)
This is example SYNO031-1 from the TPTP Problem Library. It is more
commonly referred to as MQW.

X2115: Ox [0y, P, xy OOz Pzz] O0Ou Ov, [PuvOM_ uOQ,.f  uv] OOw, [QwOIM.g, W]
O0Oulv.P[gulvOPuu
(search: 0.12secs merge0.72secs  trandate 2.57 secs  total: 4.73 secs)

X2116: Ox Oy, [P, x OR_ x[g,.h, y] OPy] OOw [PwOP[gw] OPhw] OOx.PxOLy.Rxy O

Py o (search: 0.42 secs  total: 0.93 secs)
X2129: (X Oy [Px=Py]=[[kQx=0yPy]l=.IxOy[Qx=Qy]=.[kPx=0yQy

(search: 0.14 secs  merge: 44.05 secs  trandate: 70.87 secs  print: 5.67
secs total: 122.48 secs)

This was presented as a challenge problem by Andrews at the Fourth Workshop
on Automated Deduction in 1979. Other researchers (see references cited in
[34] and [49]) have found ways to dea with this problem, often by making
reductions of it in the preprocessing stage. TPS found a refutation for this
problem using path-focused duplication. The natural deduction proof is 584 lines

long.
X5200:x Oy=0 Av.v=xDOv=y (search: 13.45secs  total: 16.62 secs)
X5205: #fuB[ N WO(OB)] OnN #[#flw (search: 4.44 mins  total: 6.31 mins)
X5304: (I, Of , O, .9)=f (search: 0.09 secs  total: 0.43 secs)

This is the Simple Cantor Theorem for Sets, which TpPsl could prove[6]. It is
stated here for comparison with X5305 below, which is harder to prove.

X5305: Us , .1, Uf,, fOsO0, .sjOgj=f (search: 0.37 secs  total: 1.42 secs)
We call this the General Cantor Theorem for Sets. It says that there is no
mapping g from a set s onto its power set.

X5308: EJB(OB) UPgg [[b(B px Opjp] O.0x, Dyg Mopa XY = EfBa Ox rx.f>_< .
(search: 0.31secs total: 1.21 secs)
The Axiom of Choice (for type B) is [EJB()B) Dpoﬁ.[txB p x O p.j p]; it asserts that
there is a choice function jB(om which chooses an element jB(OmpoB from every
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non-empty set p,,. X5308 shows a consequence of this axiom.
[onB ygrxy O ., o Oxrxfx]O E]B(OB) UPyp- DX px O p.j p '
(search: 21.7 mins  total: 21.8 mins)
X5310 implies the converse of X5308 (suitably generalized) when a is (o). The
proof of thistheorem was discussed in section 4.

X5310: Or

op(oB) B(oB)

7. Conclusion

While Tps is still under development, it already provides a rich environment for exploring the
complexities of theorem proving in higher-order logic. Experience with TPs leads to the following
conclusions:

* In many contexts, the use of higher-order logic is very advantageous.

» When verifying theorems which are too hard to prove completely automatically, it is
extremely valuable to be able to work in a mixture of automatic and interactive modes,
whereby the user builds up the outline of the proof in natural deduction style and inserts
lemmas into the proof, and calls on the automatic procedures to fill gaps in the proof.

* Searching for expansion proofs and then translating these into natural deduction proofsis
a good way of constructing natural deduction proofs automatically. Expansion proofs
provide a good context for search, as well as for the development of new ideas related to
higher-order theorem proving.

» The use of primitive substitutions and gensubs is an effective mechanism for generating
substitution terms for higher-order variables. We arbitrarily guess that certain
connectives and quantifiers may be needed in these terms, and the details of the structure
of the terms are determined by the search process and the unification algorithm.

There is much to be done in the development of methods for higher-order theorem proving and
the improvement of TPS. Some magjor areas where work is needed are:

» the basic mechanisms of searching for matings,

« the efficiency of higher-order unification;

* the treatment of equality;

* the introduction of rewrite rules,

» methods of instantiating quantifiers on higher-order variables,
» methods of deciding when to instantiate definitions;

* improved methods of transforming proofs from one format to another, and improving the
style of the proofs which are obtained.

With the aid of TPs, one can think in a concrete way about these problems.
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